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Consider the matrix R € R™*" from the last lecture and its singular value decomposition
given by R = PXQT, where P € R™™ and QQ € R™ " are orthogonal matrices, and ¥ =
“Diag (0)” € R™*". We assume for 0 = (01;---;0;) that oy > - -+ > 0y > 0 with [ = min{m, n}.
We have

[Rll2 = o1, [Bllr = lloll2 and [|R][. = [[o]x.

Proposition 1 The eigenvalues of

are *oq,---,+0,,0,---,0.

Proof: R = PXQT implies that
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where we assume that m > n and X = [ 0 } Also,
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where [ := \/LEI" and [ :=1,,_,. O
Hence, minimizing ||R(y)||2 is equivalent to
— max —n
0.

Proposition 2 Suppose R € R™*™ with m > n; then
2|R||l«= min TeU+TeV
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—
e

where U and V' are symmetric matrices.



Proof: Again assume that R = PXQT and ¥ = [ %): } . Note that
U R U %
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where U = PTUP and V = QTVQ. So, minimizing trace (U) + trace (V) is equivalent to
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minimizing trace (U) + trace (V). That is, we want to solve
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First the necessary conditions: u;; > 0 for all j; u; > 0, 0;; > 0, and ;;0;; > a? for all 7. These
conditions are sufficient if we set U = 0 and the off-diagonal entries of U and V to zero. By
the arithmetic mean-geometric mean inequality, the trace is minimized by setting

’17/”:7}“:(71 fori:1,~~~,n, andUzO.
This completes the proof. O

Thus, min ||R(y)||« is equivalent to

minUMy TeU+TeV
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Maybe we are interested in
min rank(R)
AR =b.

An example of this form is the minimum rank completion problem:
min rank(R)
rij = lij: Zj € K

Such problems arise in collaborative filtering, e.g., the Netflix problem, where we are trying to
interpret the ranking matrix R as the result of a small number of factors, i.e., write it as PQ)
where P has a small number of columns.



Note that ||R||. < rank(R) for all R with ||R||; < 1. In fact ||R||. is the convex envelope of
rank(R) on this set.

Another motivation for replacing the rank objective by the nuclear norm comes from exam-
ples. Consider first the following LP problem

min ez
ul'z =3,
x>0,

where e = (1;1;--+;1), u > 0 and § > 0. The optimal solution of this problem is sparse, with
just one nonzero component. In general, min ||z[|; is a proxy for getting the sparsest solution.
Analogously, consider
min /e X
UeX =4,
X =0,

with U = 0 and 8 > 0. If U = QAQT with A = A(U), then the optimal X is given by
</\%> q1qt , with rank one. So minimizing ||R||. is a proxy for minimizing the rank of a matrix,

and we can approximate the minimum-rank problems above by instead minimizing the nuclear
norm.

LP and some NLPs
Counsider first an LP in dual form:

max bly
ATy <ec.

This is equivalent to
max bly
Diag (¢ — ATy) = 0, or
C—-Ay =0,

where C' = Diag (¢) and A; = Diag (a;1; - - - ; i) for all 4. This is an SDP problem in dual form.
Suppose we now have
min ¢’z
Ar =0,
x> 0.

By considering the diagonal matrix X = Diag (x), we can write
minyeye C o X

Ai.X:bi, izl,---,m
X =0,

with C and the A;s as above. However, at the optimal solution X is not necessarily a diagonal
matrix. This problem has both block-diagonal and sparsity structures. Without loss of gener-
ality, we can assume that X has the same block diagonal structure as C' and the A;s (see HW1).
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However, for general sparsity structure, we cannot assume that X has the same structure. For
example, if

X =

(S R S

1
1
1

— = e

then we would need nonzeros in the missing parts marked by ‘?” to make X psd. However, the
dual slack S always inherits the sparsity of C' and the A;s.
More examples using block-diagonal structure: suppose we want to solve
(0T y+8)?
dTy+6
ATy <c,

min

where we assume that ATy < ¢ implies d¥y +J > 0. Then,

b7y + 6)? d'y+6 bTy+p
>V I -
=Ty e My+8 7 =0,

using the Schur complement. Thus, we obtain

min 7
. . dfy+6 bvly+p ] )
Diag | Diag (c — ATy), = 0.
g( g ( y)[gy+5 . -
Exercise: Extend this derivation to min ”i;yTiZHg.

Consider an SDP problem in inequality form:

min CeX
fL~o‘X’§§b% 1= 1,"',ﬂ1
X = 0.

Add slack variables £ = (&;)", and write the problem as

min C e X
AjeX=b, i=1--,m
X =0,
where
A _ C 0 n+m
C—{OO]eM
and

Ar_[Ai 0],¢_1,~Jn

T
0 ee;

. oD X 0
<and without loss of generality X = [ 0 Diag (¢) }) .



