Semidefinite Programming
 OR 6327 Spring 2012
 Scribe: Ilker Birbil

Lecture 4
February 2, 2012

Consider the matrix $R \in \mathbb{R}^{m \times n}$ from the last lecture and its singular value decomposition given by $R=P \Sigma Q^{T}$, where $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma=$ "Diag (σ) " $\in \mathbb{R}^{m \times n}$. We assume for $\sigma=\left(\sigma_{1} ; \cdots ; \sigma_{l}\right)$ that $\sigma_{1} \geq \cdots \geq \sigma_{l} \geq 0$ with $l=\min \{m, n\}$. We have

$$
\|R\|_{2}=\sigma_{1},\|R\|_{F}=\|\sigma\|_{2} \text { and }\|R\|_{*}=\|\sigma\|_{1} .
$$

Proposition 1 The eigenvalues of

$$
\left[\begin{array}{cc}
0 & R \\
R^{T} & 0
\end{array}\right] \in \mathbb{M}^{m+n}
$$

are $\pm \sigma_{1}, \cdots, \pm \sigma_{n}, 0, \cdots, 0$.
Proof: $R=P \Sigma Q^{T}$ implies that

$$
\left[\begin{array}{cc}
P^{T} & 0 \\
0 & Q^{T}
\end{array}\right]\left[\begin{array}{cc}
0 & R \\
R^{T} & 0
\end{array}\right]\left[\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right]=\left[\begin{array}{cc}
0 & \Sigma \\
\Sigma^{T} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & \bar{\Sigma} \\
0 & 0 & 0 \\
\bar{\Sigma} & 0 & 0
\end{array}\right]
$$

where we assume that $m \geq n$ and $\Sigma=\left[\begin{array}{c}\bar{\Sigma} \\ 0\end{array}\right]$. Also,

$$
\left[\begin{array}{ccc}
\bar{I} & 0 & \bar{I} \\
0 & I & 0 \\
\bar{I} & 0 & -\bar{I}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & \bar{\Sigma} \\
0 & 0 & 0 \\
\bar{\Sigma} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\bar{I} & 0 & \bar{I} \\
0 & I & 0 \\
\bar{I} & 0 & -\bar{I}
\end{array}\right]=\left[\begin{array}{ccc}
\bar{\Sigma} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -\bar{\Sigma}
\end{array}\right],
$$

where $\bar{I}:=\frac{1}{\sqrt{2}} I_{n}$ and $I:=I_{m-n}$.
Hence, minimizing $\|R(y)\|_{2}$ is equivalent to

$$
-\max \left[\begin{array}{cc}
-\eta I_{m} & R(y) \\
R(y)^{T} & -\eta I_{n}
\end{array}\right] \preceq 0 .
$$

Proposition 2 Suppose $R \in \mathbb{R}^{m \times n}$ with $m \geq n$; then

$$
\begin{aligned}
2\|R\|_{*}=\min & I \bullet U+I \bullet V \\
& {\left[\begin{array}{cc}
U & R \\
R^{T} & V
\end{array}\right] \succeq 0, }
\end{aligned}
$$

where U and V are symmetric matrices.

Proof: Again assume that $R=P \Sigma Q^{T}$ and $\Sigma=\left[\begin{array}{c}\bar{\Sigma} \\ 0\end{array}\right]$. Note that

$$
\left[\begin{array}{cc}
U & R \\
R^{T} & V
\end{array}\right] \succeq 0 \Longleftrightarrow\left[\begin{array}{cc}
\hat{U} & \Sigma \\
\Sigma^{T} & \hat{V}
\end{array}\right] \succeq 0
$$

where $\hat{U}=P^{T} U P$ and $\hat{V}=Q^{T} V Q$. So, minimizing trace $(U)+\operatorname{trace}(V)$ is equivalent to minimizing trace $(\hat{U})+\operatorname{trace}(\hat{V})$. That is, we want to solve

$$
\begin{aligned}
\min & I \bullet \hat{U}+I \bullet \hat{V} \\
& {\left[\begin{array}{cc}
\hat{U} & \Sigma \\
\Sigma^{T} & \hat{V}
\end{array}\right] \succeq 0 . }
\end{aligned}
$$

If

$$
\hat{U}=\left[\begin{array}{cc}
\bar{U} & \check{U} \\
\check{U}^{T} & \tilde{U}
\end{array}\right]
$$

then we want to check whether

$$
\left[\begin{array}{ccc}
\bar{U} & \bar{\Sigma} & \check{U} \\
\bar{\Sigma} & \hat{V} & 0 \\
\check{U}^{T} & 0 & \tilde{U}
\end{array}\right] \succeq 0
$$

First the necessary conditions: $\tilde{u}_{j j} \geq 0$ for all $j ; \bar{u}_{i i} \geq 0, \hat{v}_{i i} \geq 0$, and $\bar{u}_{i i} \hat{v}_{i i} \geq \sigma_{i}^{2}$ for all i. These conditions are sufficient if we set $\check{U}=0$ and the off-diagonal entries of \bar{U} and \hat{V} to zero. By the arithmetic mean-geometric mean inequality, the trace is minimized by setting

$$
\bar{u}_{i i}=\hat{v}_{i i}=\sigma_{i} \text { for } i=1, \cdots, n, \text { and } \tilde{U}=0
$$

This completes the proof.
Thus, min $\|R(y)\|_{*}$ is equivalent to

$$
\min _{U, V, y} \quad \begin{gathered}
I \bullet U+I \bullet V \\
{\left[\begin{array}{cc}
U & R(y) \\
R(y)^{T} & V
\end{array}\right] \succeq 0 .}
\end{gathered}
$$

Maybe we are interested in

$$
\begin{array}{ll}
\min & \operatorname{rank}(R) \\
& \mathcal{A} R=b
\end{array}
$$

An example of this form is the minimum rank completion problem:

$$
\begin{array}{ll}
\min & \operatorname{rank}(R) \\
& r_{i j}=l_{i j}, \quad i j \in K .
\end{array}
$$

Such problems arise in collaborative filtering, e.g., the Netflix problem, where we are trying to interpret the ranking matrix R as the result of a small number of factors, i.e., write it as $P Q$ where P has a small number of columns.

Note that $\|R\|_{*} \leq \operatorname{rank}(R)$ for all R with $\|R\|_{2} \leq 1$. In fact $\|R\|_{*}$ is the convex envelope of $\operatorname{rank}(R)$ on this set.

Another motivation for replacing the rank objective by the nuclear norm comes from examples. Consider first the following LP problem

$$
\begin{aligned}
\min & e^{T} x \\
& u^{T} x=\beta, \\
& x \geq 0,
\end{aligned}
$$

where $e=(1 ; 1 ; \cdots ; 1), u>0$ and $\beta>0$. The optimal solution of this problem is sparse, with just one nonzero component. In general, min $\|x\|_{1}$ is a proxy for getting the sparsest solution. Analogously, consider

$$
\begin{aligned}
\min & I \bullet X \\
& U \bullet X=\beta, \\
& X \succeq 0,
\end{aligned}
$$

with $U \succ 0$ and $\beta>0$. If $U=Q \Lambda Q^{T}$ with $\Lambda=\Lambda(U)$, then the optimal X is given by $\left(\frac{\beta}{\lambda_{1}}\right) q_{1} q_{1}^{T}$, with rank one. So minimizing $\|R\|_{*}$ is a proxy for minimizing the rank of a matrix, and we can approximate the minimum-rank problems above by instead minimizing the nuclear norm.

LP and some NLPs

Consider first an LP in dual form:

$$
\begin{array}{ll}
\max & b^{T} y \\
& A^{T} y \leq c .
\end{array}
$$

This is equivalent to

$$
\begin{array}{ll}
\max & b^{T} y \\
& \operatorname{Diag}\left(c-A^{T} y\right) \succeq 0, \text { or } \\
& C-\mathcal{A}^{*} y \succeq 0,
\end{array}
$$

where $C=\operatorname{Diag}(c)$ and $A_{i}=\operatorname{Diag}\left(a_{i 1} ; \cdots ; a_{i n}\right)$ for all i. This is an SDP problem in dual form.
Suppose we now have

$$
\begin{aligned}
\min & c^{T} x \\
& A x=b, \\
& x \geq 0
\end{aligned}
$$

By considering the diagonal matrix $X=\operatorname{Diag}(x)$, we can write

$$
\begin{array}{rl}
\min _{X \in \mathbb{M}^{n}} & C \bullet X \\
& A_{i} \bullet X=b_{i}, \quad i=1, \cdots, m \\
& X \succeq 0,
\end{array}
$$

with C and the A_{i} s as above. However, at the optimal solution X is not necessarily a diagonal matrix. This problem has both block-diagonal and sparsity structures. Without loss of generality, we can assume that X has the same block diagonal structure as C and the A_{i} (see HW1).

However, for general sparsity structure, we cannot assume that X has the same structure. For example, if

$$
X=\left[\begin{array}{lll}
1 & 1 & ? \\
1 & 1 & 1 \\
? & 1 & 1
\end{array}\right]
$$

then we would need nonzeros in the missing parts marked by '?' to make X psd. However, the dual slack S always inherits the sparsity of C and the A_{i} s.

More examples using block-diagonal structure: suppose we want to solve

$$
\begin{aligned}
\min & \frac{\left(b^{T} y+\beta\right)^{2}}{d^{T} y+\delta} \\
& A^{T} y \leq c,
\end{aligned}
$$

where we assume that $A^{T} y \leq c$ implies $d^{T} y+\delta>0$. Then,

$$
\eta \geq \frac{\left(b^{T} y+\beta\right)^{2}}{d^{T} y+\delta} \Longleftrightarrow\left[\begin{array}{cc}
d^{T} y+\delta & b^{T} y+\beta \\
b^{T} y+\beta & \eta
\end{array}\right] \succeq 0
$$

using the Schur complement. Thus, we obtain

$$
\begin{array}{ll}
\min & \eta \\
& \operatorname{Diag}\left(\operatorname{Diag}\left(c-A^{T} y\right),\left[\begin{array}{cc}
d^{T} y+\delta & b^{T} y+\beta \\
b^{T} y+\beta & \eta
\end{array}\right]\right) \succeq 0 .
\end{array}
$$

Exercise: Extend this derivation to min $\frac{\left\|B^{T} y+b\right\|_{2}^{2}}{d^{T} y+\delta}$.
Consider an SDP problem in inequality form:

$$
\begin{aligned}
\min & C \bullet X \\
& A_{i} \bullet X \leq b_{i}, \quad i=1, \cdots, m \\
& X \succeq 0 .
\end{aligned}
$$

Add slack variables $\xi=\left(\xi_{i}\right)_{i=1}^{m}$ and write the problem as

$$
\begin{aligned}
\min & \hat{C} \bullet \hat{X} \\
& \hat{A}_{i} \bullet \hat{X}=b_{i}, \quad i=1, \cdots, m \\
& \hat{X} \succeq 0,
\end{aligned}
$$

where

$$
\hat{C}=\left[\begin{array}{ll}
C & 0 \\
0 & 0
\end{array}\right] \in \mathbb{M}^{n+m}
$$

and

$$
\begin{gathered}
\hat{A}_{i}=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & e_{i} e_{i}^{T}
\end{array}\right], i=1, \cdots, m \\
\left(\text { and without loss of generality } \hat{X}=\left[\begin{array}{cc}
X & 0 \\
0 & \operatorname{Diag}(\xi)
\end{array}\right]\right) .
\end{gathered}
$$

