Consider the matrix $R \in \mathbb{R}^{m \times n}$ from the last lecture and its singular value decomposition given by $R = P \Sigma Q^T$, where $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma =$ "Diag (σ) " $\in \mathbb{R}^{m \times n}$. We assume for $\sigma = (\sigma_1; \cdots; \sigma_l)$ that $\sigma_1 \geq \cdots \geq \sigma_l \geq 0$ with $l = \min\{m, n\}$. We have

 $||R||_2 = \sigma_1, ||R||_F = ||\sigma||_2 \text{ and } ||R||_* = ||\sigma||_1.$

Proposition 1 The eigenvalues of

$$\left[\begin{array}{cc} 0 & R\\ R^T & 0 \end{array}\right] \in \mathbb{M}^{m+n}$$

are $\pm \sigma_1, \cdots, \pm \sigma_n, 0, \cdots, 0.$

Proof: $R = P\Sigma Q^T$ implies that

$$\begin{bmatrix} P^T & 0 \\ 0 & Q^T \end{bmatrix} \begin{bmatrix} 0 & R \\ R^T & 0 \end{bmatrix} \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} = \begin{bmatrix} 0 & \Sigma \\ \Sigma^T & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \overline{\Sigma} \\ 0 & 0 & 0 \\ \overline{\Sigma} & 0 & 0 \end{bmatrix},$$

where we assume that $m \ge n$ and $\Sigma = \begin{bmatrix} \overline{\Sigma} \\ 0 \end{bmatrix}$. Also,

$$\begin{bmatrix} \bar{I} & 0 & \bar{I} \\ 0 & I & 0 \\ \bar{I} & 0 & -\bar{I} \end{bmatrix} \begin{bmatrix} 0 & 0 & \bar{\Sigma} \\ 0 & 0 & 0 \\ \bar{\Sigma} & 0 & 0 \end{bmatrix} \begin{bmatrix} \bar{I} & 0 & \bar{I} \\ 0 & I & 0 \\ \bar{I} & 0 & -\bar{I} \end{bmatrix} = \begin{bmatrix} \bar{\Sigma} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\bar{\Sigma} \end{bmatrix}$$

where $\overline{I} := \frac{1}{\sqrt{2}} I_n$ and $I := I_{m-n}$. \Box

Hence, minimizing $||R(y)||_2$ is equivalent to

$$-\max \qquad -\eta \\ \begin{bmatrix} -\eta I_m & R(y) \\ R(y)^T & -\eta I_n \end{bmatrix} \preceq 0.$$

Proposition 2 Suppose $R \in \mathbb{R}^{m \times n}$ with $m \ge n$; then

$$2\|R\|_* = \min \quad I \bullet U + I \bullet V \\ \begin{bmatrix} U & R \\ R^T & V \end{bmatrix} \succeq 0,$$

where U and V are symmetric matrices.

Proof: Again assume that $R = P\Sigma Q^T$ and $\Sigma = \begin{bmatrix} \overline{\Sigma} \\ 0 \end{bmatrix}$. Note that

$$\begin{bmatrix} U & R \\ R^T & V \end{bmatrix} \succeq 0 \iff \begin{bmatrix} \hat{U} & \Sigma \\ \Sigma^T & \hat{V} \end{bmatrix} \succeq 0,$$

where $\hat{U} = P^T U P$ and $\hat{V} = Q^T V Q$. So, minimizing trace (U) + trace (V) is equivalent to minimizing trace (\hat{U}) + trace (\hat{V}) . That is, we want to solve

$$\min \quad I \bullet \hat{U} + I \bullet \hat{V} \\ \begin{bmatrix} \hat{U} & \Sigma \\ \Sigma^T & \hat{V} \end{bmatrix} \succeq 0.$$

If

$$\hat{U} = \left[\begin{array}{cc} \bar{U} & \check{U} \\ \check{U}^T & \tilde{U} \end{array} \right],$$

then we want to check whether

\bar{U}	$\bar{\Sigma}$	Ŭ]	
$\bar{\Sigma}$	\hat{V}	0	$\succeq 0.$
\check{U}^T	0	\tilde{U}	

First the necessary conditions: $\tilde{u}_{jj} \ge 0$ for all j; $\bar{u}_{ii} \ge 0$, $\hat{v}_{ii} \ge 0$, and $\bar{u}_{ii}\hat{v}_{ii} \ge \sigma_i^2$ for all i. These conditions are <u>sufficient</u> if we set $\check{U} = 0$ and the off-diagonal entries of \bar{U} and \hat{V} to zero. By the arithmetic mean-geometric mean inequality, the trace is minimized by setting

$$\bar{u}_{ii} = \hat{v}_{ii} = \sigma_i$$
 for $i = 1, \cdots, n$, and $U = 0$.

This completes the proof. \Box

Thus, min $||R(y)||_*$ is equivalent to

$$\min_{U,V,y} \quad \begin{array}{c} I \bullet U + I \bullet V \\ \left[\begin{array}{c} U & R(y) \\ R(y)^T & V \end{array} \right] \succeq 0 \end{array}$$

Maybe we are interested in

$$\begin{array}{ll} \min & \operatorname{rank}(R) \\ \mathcal{A}R = b. \end{array}$$

An example of this form is the minimum rank completion problem:

$$\begin{array}{ll} \min & \operatorname{rank}(R) \\ & r_{ij} = l_{ij}, \quad ij \in K \end{array}$$

Such problems arise in collaborative filtering, e.g., the Netflix problem, where we are trying to interpret the ranking matrix R as the result of a small number of factors, i.e., write it as PQ where P has a small number of columns.

Note that $||R||_* \leq \operatorname{rank}(R)$ for all R with $||R||_2 \leq 1$. In fact $||R||_*$ is the convex envelope of $\operatorname{rank}(R)$ on this set.

Another motivation for replacing the rank objective by the nuclear norm comes from examples. Consider first the following LP problem

$$\begin{array}{ll} \min & e^T x \\ & u^T x = \beta, \\ & x \ge 0, \end{array}$$

where $e = (1; 1; \dots; 1)$, u > 0 and $\beta > 0$. The optimal solution of this problem is sparse, with just one nonzero component. In general, min $||x||_1$ is a proxy for getting the sparsest solution. Analogously, consider

$$\begin{array}{ll} \min & I \bullet X \\ & U \bullet X = \beta \\ & X \succeq 0, \end{array}$$

with $U \succ 0$ and $\beta > 0$. If $U = Q\Lambda Q^T$ with $\Lambda = \Lambda(U)$, then the optimal X is given by $\left(\frac{\beta}{\lambda_1}\right) q_1 q_1^T$, with rank one. So minimizing $||R||_*$ is a proxy for minimizing the rank of a matrix, and we can approximate the minimum-rank problems above by instead minimizing the nuclear norm.

LP and some NLPs

Consider first an LP in dual form:

$$\begin{array}{ll} \max & b^T y \\ & A^T y \le c. \end{array}$$

This is equivalent to

$$\begin{array}{ll} \max & b^T y \\ & \text{Diag} \left(c - A^T y \right) \succeq 0, \text{ or} \\ & C - \mathcal{A}^* y \succeq 0, \end{array}$$

where C = Diag(c) and $A_i = \text{Diag}(a_{i1}; \cdots; a_{in})$ for all *i*. This is an SDP problem in dual form. Suppose we now have

$$\begin{array}{ll} \min & c^T x \\ & Ax = b \\ & x \ge 0. \end{array}$$

By considering the diagonal matrix X = Diag(x), we can write

$$\min_{X \in \mathbb{M}^n} \quad C \bullet X$$

$$A_i \bullet X = b_i, \quad i = 1, \cdots, m$$

$$X \succeq 0,$$

with C and the A_i s as above. However, at the optimal solution X is not necessarily a diagonal matrix. This problem has both block-diagonal and sparsity structures. Without loss of generality, we can assume that X has the same block diagonal structure as C and the A_i s (see HW1).

However, for general sparsity structure, we cannot assume that X has the same structure. For example, if

$$X = \begin{bmatrix} 1 & 1 & ? \\ 1 & 1 & 1 \\ ? & 1 & 1 \end{bmatrix},$$

then we would need nonzeros in the missing parts marked by '?' to make X psd. However, the dual slack S always inherits the sparsity of C and the A_i s.

More examples using block-diagonal structure: suppose we want to solve

$$\min \quad \frac{(b^T y + \beta)^2}{d^T y + \delta}$$
$$A^T y \le c,$$

where we assume that $A^T y \leq c$ implies $d^T y + \delta > 0$. Then,

$$\eta \geq \frac{(b^T y + \beta)^2}{d^T y + \delta} \iff \left[\begin{array}{cc} d^T y + \delta & b^T y + \beta \\ b^T y + \beta & \eta \end{array} \right] \succeq 0,$$

using the Schur complement. Thus, we obtain

min
$$\eta$$

Diag $\left(\text{Diag}\left(c - A^T y \right), \begin{bmatrix} d^T y + \delta & b^T y + \beta \\ b^T y + \beta & \eta \end{bmatrix} \right) \succeq 0.$

Exercise: Extend this derivation to min $\frac{\|B^T y + b\|_2^2}{d^T y + \delta}$.

Consider an SDP problem in inequality form:

min
$$C \bullet X$$

 $A_i \bullet X \leq b_i, \quad i = 1, \cdots, m$
 $X \succeq 0.$

Add slack variables $\xi = (\xi_i)_{i=1}^m$ and write the problem as

$$\begin{array}{ll} \min & \hat{C} \bullet \hat{X} \\ & \hat{A}_i \bullet \hat{X} = b_i, \quad i = 1, \cdots, m \\ & \hat{X} \succeq 0, \end{array}$$

where

$$\hat{C} = \begin{bmatrix} C & 0\\ 0 & 0 \end{bmatrix} \in \mathbb{M}^{n+m}$$

and

$$\hat{A}_{i} = \begin{bmatrix} A_{i} & 0\\ 0 & e_{i}e_{i}^{T} \end{bmatrix}, \ i = 1, \cdots, m$$

and without loss of generality $\hat{X} = \begin{bmatrix} X & 0\\ 0 & \text{Diag}(\xi) \end{bmatrix}$.