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Consider the matrix R ∈ Rm×n from the last lecture and its singular value decomposition
given by R = PΣQT , where P ∈ Rm×m and Q ∈ Rn×n are orthogonal matrices, and Σ =
“Diag (σ)” ∈ Rm×n. We assume for σ = (σ1; · · · ; σl) that σ1 ≥ · · · ≥ σl ≥ 0 with l = min{m,n}.
We have

‖R‖2 = σ1, ‖R‖F = ‖σ‖2 and ‖R‖∗ = ‖σ‖1.

Proposition 1 The eigenvalues of [
0 R

RT 0

]
∈ Mm+n

are ±σ1, · · · ,±σn, 0, · · · , 0.

Proof: R = PΣQT implies that

[
P T 0
0 QT

] [
0 R

RT 0

] [
P 0
0 Q

]
=

[
0 Σ

ΣT 0

]
=

 0 0 Σ̄
0 0 0
Σ̄ 0 0

 ,

where we assume that m ≥ n and Σ =

[
Σ̄
0

]
. Also,

 Ī 0 Ī
0 I 0
Ī 0 −Ī

 0 0 Σ̄
0 0 0
Σ̄ 0 0

 Ī 0 Ī
0 I 0
Ī 0 −Ī

 =

 Σ̄ 0 0
0 0 0
0 0 −Σ̄

 ,

where Ī := 1√
2
In and I := Im−n. ut

Hence, minimizing ‖R(y)‖2 is equivalent to

−max −η[
−ηIm R(y)
R(y)T −ηIn

]
� 0.

Proposition 2 Suppose R ∈ Rm×n with m ≥ n; then

2‖R‖∗ = min I • U + I • V[
U R
RT V

]
� 0,

where U and V are symmetric matrices.
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Proof: Again assume that R = PΣQT and Σ =

[
Σ̄
0

]
. Note that

[
U R
RT V

]
� 0 ⇐⇒

[
Û Σ

ΣT V̂

]
� 0,

where Û = P T UP and V̂ = QT V Q. So, minimizing trace (U) + trace (V ) is equivalent to
minimizing trace (Û) + trace (V̂ ). That is, we want to solve

min I • Û + I • V̂[
Û Σ

ΣT V̂

]
� 0.

If

Û =

[
Ū Ǔ

ǓT Ũ

]
,

then we want to check whether  Ū Σ̄ Ǔ

Σ̄ V̂ 0

ǓT 0 Ũ

 � 0.

First the necessary conditions: ũjj ≥ 0 for all j; ūii ≥ 0, v̂ii ≥ 0, and ūiiv̂ii ≥ σ2
i for all i. These

conditions are sufficient if we set Ǔ = 0 and the off-diagonal entries of Ū and V̂ to zero. By
the arithmetic mean-geometric mean inequality, the trace is minimized by setting

ūii = v̂ii = σi for i = 1, · · · , n, and Ũ = 0.

This completes the proof. ut

Thus, min ‖R(y)‖∗ is equivalent to

minU,V,y I • U + I • V[
U R(y)

R(y)T V

]
� 0.

Maybe we are interested in
min rank(R)

AR = b.

An example of this form is the minimum rank completion problem:

min rank(R)
rij = lij, ij ∈ K.

Such problems arise in collaborative filtering, e.g., the Netflix problem, where we are trying to
interpret the ranking matrix R as the result of a small number of factors, i.e., write it as PQ
where P has a small number of columns.
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Note that ‖R‖∗ ≤ rank(R) for all R with ‖R‖2 ≤ 1. In fact ‖R‖∗ is the convex envelope of
rank(R) on this set.

Another motivation for replacing the rank objective by the nuclear norm comes from exam-
ples. Consider first the following LP problem

min eT x
uT x = β,
x ≥ 0,

where e = (1; 1; · · · ; 1), u > 0 and β > 0. The optimal solution of this problem is sparse, with
just one nonzero component. In general, min ‖x‖1 is a proxy for getting the sparsest solution.
Analogously, consider

min I •X
U •X = β,
X � 0,

with U � 0 and β > 0. If U = QΛQT with Λ = Λ(U), then the optimal X is given by(
β
λ1

)
q1q

T
1 , with rank one. So minimizing ‖R‖∗ is a proxy for minimizing the rank of a matrix,

and we can approximate the minimum-rank problems above by instead minimizing the nuclear
norm.

LP and some NLPs

Consider first an LP in dual form:

max bT y
AT y ≤ c.

This is equivalent to
max bT y

Diag (c− AT y) � 0, or
C −A∗y � 0,

where C = Diag (c) and Ai = Diag (ai1; · · · ; ain) for all i. This is an SDP problem in dual form.
Suppose we now have

min cT x
Ax = b,
x ≥ 0.

By considering the diagonal matrix X = Diag (x), we can write

minX∈Mn C •X
Ai •X = bi, i = 1, · · · , m
X � 0,

with C and the Ais as above. However, at the optimal solution X is not necessarily a diagonal
matrix. This problem has both block-diagonal and sparsity structures. Without loss of gener-
ality, we can assume that X has the same block diagonal structure as C and the Ais (see HW1).
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However, for general sparsity structure, we cannot assume that X has the same structure. For
example, if

X =

 1 1 ?
1 1 1
? 1 1

 ,

then we would need nonzeros in the missing parts marked by ‘?’ to make X psd. However, the
dual slack S always inherits the sparsity of C and the Ais.

More examples using block-diagonal structure: suppose we want to solve

min (bT y+β)2

dT y+δ

AT y ≤ c,

where we assume that AT y ≤ c implies dT y + δ > 0. Then,

η ≥ (bT y + β)2

dT y + δ
⇐⇒

[
dT y + δ bT y + β
bT y + β η

]
� 0,

using the Schur complement. Thus, we obtain

min η

Diag

(
Diag (c− AT y),

[
dT y + δ bT y + β
bT y + β η

])
� 0.

Exercise: Extend this derivation to min
‖BT y+b‖22

dT y+δ
.

Consider an SDP problem in inequality form:

min C •X
Ai •X ≤ bi, i = 1, · · · , m
X � 0.

Add slack variables ξ = (ξi)
m
i=1 and write the problem as

min Ĉ • X̂

Âi • X̂ = bi, i = 1, · · · , m
X̂ � 0,

where

Ĉ =

[
C 0
0 0

]
∈ Mn+m

and

Âi =

[
Ai 0
0 eie

T
i

]
, i = 1, · · · , m(

and without loss of generality X̂ =

[
X 0
0 Diag (ξ)

])
.
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