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Fact 10: U is psd (respectively, pd) if and only if all its principal minors (2n of them) are
nonnegative (positive); U is pd if and only if all its leading principal minors are positive; and
U is pd if and only if it has a Cholesky factorization, i.e., U = LLT , where L ∈ Rn×n is lower
triangular with positive diagonal entries.

Fact 11: Suppose U =

[
A B
BT C

]
∈ Mn

+, and suppose A � 0; then U is psd (pd) if and

only if C −BT A−1B is psd (pd). (C −BT A−1B is called the Schur complement of A in U .)

Proof: If A � 0, then[
A B
BT C

]
=

[
I 0

BT A−1 I

] [
A 0
0 C −BT A−1B

] [
I A−1B
0 I

]

since

[
I 0

BT A−1 I

]
is a nonsingular matrix. �

This can be used to show the existence of a Cholesky factorization of a pd matrix, since its
top left entry must be positive and can be chosen as A, and then the equation above shows
how the result can be established by induction.

Fact 12 (Representing quadratics): For U ∈ Mn, xT Ux = U • xxT is a quadratic function
of x but a linear function of X = xxT .

Fact 13: If U and V are psd, then U • V ≥ 0 (used in the Weak Duality Lemma). Indeed, we
have the following theorem.

Theorem 1 The cone K = Mn
+ is self-dual, i.e., equal to

K∗ := {V ∈ Mn : U • V ≥ 0 ∀U ∈ K}.

Proof:
First show K ⊆ K∗ with the following two methods:

• By facts 3-5, we can assume wlog that U is diagonal, and then U • V =
∑

j ujj vjj ≥ 0
(we don’t get a double sum because U is diagonal).

• U • V = trace (UV ) = trace (U1/2V U1/2) ≥ 0 since U has a psd square root and
U1/2V U1/2 is psd, so has nonnegative trace. (The trace is the sum of the eigenvalues,
which are nonnegative for a psd matrix.)
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Now show K∗ ⊆ K:
Suppose V /∈ K, so there is z ∈ Rn with zT V z < 0. But zzT ∈ K and zzT •V = zT V z < 0,

which shows V /∈ K∗. �

Note: If U � 0, V � 0, V 6= 0, then U • V > 0.

Fact 14: If U � 0, and β ≥ 0, then {V ∈ Mn
+ : U • V ≤ β} is compact.

Proof: U � 0 implies λ̂ := λmin(U) > 0. Then, if V is feasible,

β ≥ U • V = (U − λ̂I + λ̂I) • V

≥ λ̂I • V = λ̂||V ||∗,

since U − λ̂I is psd and V is psd as well. So ||V ||∗ ≤ β/λ̂ < ∞, showing the feasible region is
bounded, and clearly it is closed. �

Fact 15: If U , V are psd with U •V = 0, then UV = 0 (analogous to complementary slackness
in linear programming).

(Note: the converse is trivial.)

Proof: We have

0 = trace (UV ) = trace (V 1/2UV 1/2) = (U1/2V 1/2) • (U1/2V 1/2) = ||(U1/2V 1/2)||2F .

So U1/2V 1/2 = 0, so UV = 0. �

Fact 16: If U, V ∈ Mn, they commute iff UV is symmetric, iff they can be simultaneously
diagonalized, i.e., we can write U = QΛQT , V = QMQT (see HW1).

Applications: Matrix Optimization
Recall:

miny λmax(U(y)) ≡ −max−η
(P ) −η I + U(y) � 0.

What about minimizing ||U(y)||??

• If “F” (for Frobenius), this is a least-squares problem.
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• If “2”, then this can be modeled as

−max −η
(P ) −η I + U(y) � 0

−η I − U(y) � 0

whose constraints can be written as

η

[
−I 0
0 −I

]
+

[
U(y) 0

0 −U(y)

]
� 0.

Now move away from symmetry, and consider min ||R(y)||?, where R(y) ∈ Rm×n depends
affinely on y.

• ||R||2 := max {||Rz||2 : ||z||2 = 1}.

• ||R||F :=
(∑

i

∑
j r2

ij

)1/2

= (R •R)1/2.

Theorem 2 For any R ∈ Rm×n, there is an orthogonal P ∈ Rmxm, an orthogonal Q ∈ Rm×n,
and a “diagonal” Σ =“Diag(σ)” in Rm×n, where σ = (σ1; ...; σl) ≥ 0, l = min{m, n}, with
R = PΣQT .

Proof:
WLOG, assume m ≥ n (o.w. consider RT ); then RT R ∈ Mn

+, so RT R = QΛQT with Λ � 0,
say

Λ =

[
Λ̂ 0
0 0

]
, Λ̂ ∈ Mr

++.

Define Σ̄ := Λ1/2 =

[
Λ̂1/2 0
0 0

]
=:

[
Σ̂ 0
0 0

]
∈ Mn and P̄ := RQ

[
Σ̂−1 0
0 I

]
∈ Rm×n.

Then

P̄ T P̄ =

[
Σ̂−1 0
0 I

]
QT RT RQ

[
Σ̂−1 0
0 I

]
=

[
Σ̂−1 0
0 I

] [
Σ̂2 0
0 0

] [
Σ̂−1 0
0 I

]
=

[
I 0
0 0

]
.

So P̄ has r columns of orthonormal vectors, and (n− r) columns of zero vectors.
We know

R = P̄

[
Σ̂ 0
0 I

]
QT = P̄ Σ̄QT since the last n− r columns of P̄ are zeros

= P

[
Σ̄
0

]
QT ,
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where P ∈ Rn×n is orthogonal, with its first (n − r) columns those of P̄ . Then we have the
desired decomposition. ut

The factorization in the theorem is called the singular value decomposition. If σ1 ≥ ... ≥ σl,
then σ =: σ(R), whose elements are called the singular values of R.

Note:

• ||R||2 = σ1 = ||σ(R)||∞,

• ||R||F = ||σ(R)||2,

• ||R||∗ := ||σ(R)||1.

Also, ||σ||0 = number of positive σi’s = rank(R) (not a norm).

Note: if U ∈ Mn, σ(U) = |λ(U)|. Indeed, we have

U = QΛQT = Q̄|Λ|QT ,

where Q̄ only differs from Q by the sign of some of its columns, and |Λ| is the diagonal matrix
with the absolute values of the entries of Λ. This is its singular value decomposition.
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