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Today, we will cover a few important facts about symmetric matrices and look at the problem
of minimizing the maximum eigenvalue of a matrix as an SDP problem in dual form.

First, we recall the primal and dual forms of SDP:

min C •X
s.t. AX = b (i.e., Ai •X = bi,∀i = 1, . . . ,m) (P )

X � 0,

max bT y
s.t. A∗y + S = C (where A∗y =

∑
i yiAi) (D)

S � 0.

Everything you ever want to know about symmetric ma-

trices

Fact 1 If P, Q ∈ IRm×n, then

P •Q := trace (P T Q) = trace (QP T )

= trace (QT P ) = trace (PQT )

=
∑

i

∑
j

pijqij,

even though P T Q and QP T have different sizes (n× n and m×m respectively).

Fact 2 A and A∗ are adjoint mappings:

(AX)T y = (A∗y) •X.

Fact 3 If P is a nonsingular n× n real matrix, then U is psd (respectively, pd) if and only if
PUP T is psd (resp., pd).

Fact 4 Suppose Q ∈ IRn×n is an orthogonal matrix; then(
QUQT

)
•

(
QV QT

)
= U • V.

More generally, if P ∈ IRn×n is nonsingular, then(
P−T UP−1

)
•

(
PV P T

)
= U • V.

(Generalization of
(
QT u

)T (
QT v

)
= (P−1u)

T
(Pv) = uT v.)
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Proof: (
P−T UP−1

)
•

(
PV P T

)
= trace

(
P−T UP−1PV P T

)
, by definition

= trace
(
P−T UV P T

)
= trace

(
UV P T P−T

)
, by Fact 1

= trace (UV ) = U • V.

ut
Note. Facts 3 and 4 show that (P ) is equivalent to:

min
(
P−T CP−1

)
• X̂

s.t.
(
P−T AiP

−1
)
• X̂ = bi, ∀i = 1, . . . ,m

X̂ � 0.

This problem arises from the change of variables X̂ = PXP T . Thus the primal variable
X transforms in a different way from the data C and the Ai’s and the dual slack matrix S
transforms in the same way as the data.

Fact 5 If Y ∈ Mn, then there are an orthogonal Q ∈ IRn×n and a diagonal Λ ∈ IRn×n such that
U = QΛQT .

Notation. For a diagonal matrix Λ ∈ IRn×n whose diagonal entries are λ1, . . . , λn, we write:

Λ = Diag (λ),

where λ is the vector (λ1; . . . ; λn). We also use the notation

diag (U) := (u11; . . . ; unn),

for any matrix U ∈ IRn×n. This is the adjoint mapping of Diag .
If Q = [q1, . . . , qn] (that is, qi is its ith column vector), then

UQ = QΛ = [λ1q1, . . . , λnqn].

Hence, looking at the ith column of UQ and QΛ,

Uqi = λiqi.

So, the qi’s and λi’s are the eigenvectors and eigenvalues of U . We call QΛQT the eigenvalue
decomposition of U .

We will usually assume that λ1 ≥ . . . ≥ λn, and then

λ =: λ(U), Λ =: Λ(U).

Fact 6 The following are norms on Mn:
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• The 2-norm/operator norm,

||U ||2 := max{||Uz||2 | ||z|| = 1}
= ||Λ(U)||2
= max{|λi(U)|}
= ||λ(U)||∞;

• the Frobenius norm,

||U ||F := (U • U)1/2)

= (Λ(U) • Λ(U))1/2)

= ||λ(U)||2
= ||vec(U)||2 = ||svec(U)||2,

• the nuclear norm or trace norm,

||U ||∗ := ||λ(U)||1.

Note. The following observation motivates why || · ||∗ is called the trace norm:

trace (U) =
∑

i

uii = I • U = I • Λ(U)

=
∑

i

λi(U).

Fact 7 (Theorem 1) For U ∈ Mn, the following are equivalent:

(a) U is psd (resp., pd);

(b) zT Y z ≥ 0 for all z ∈ IRn (resp., zT Y z > 0 for all nonzero z ∈ IRn);

(c) λ(u) ≥ 0 (resp., λ(u) > 0); and

(d) U = P T P for some P ∈ IRn×n (resp., for some nonsingular P ∈ IRn×n)

Proof: (a) ⇔ (b) by definition. For (b) ⇔ (c), note that if U = QΛQT , then zT Uz =
zT QΛQT z =

∑
i λiz̃i, where z̃ = QT z. Next, (d) ⇒ (b) because zT Uz = zT P T Pz =

||Pz||22 ≥ 0 for all z. For the reverse, let U = QΛQT and let P = QΛ1/2QT , where Λ1/2 :=
Diag (

√
λ1; . . . ;

√
λn). ut

Example 1 (Eigenvalue optimization) Suppose that U(y) depends linearly (affinely) on
y ∈ IRm and we want to choose y to minimize the maximum eigenvalue of U(y). Introduce
η ∈ IR and note that

λmax(U) ≤ η
⇔ λmax(U − ηI) ≤ 0
⇔ λmin(ηI − U) ≥ 0
⇔ ηI − U � 0.
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So, the problem of finding min(λmax(U(y))) can be formulated as the following SDP in dual
form:

−max −η

s.t. −ηI + U(y) � 0.

Corollary 1 Every psd matrix U has a (unique) psd square root U1/2, with U1/2U1/2 = U .
Every pd matrix U is nonsingular, and its inverse is pd.

Proof: If U = QΛQT , then set:

U1/2 := QΛ1/2QT ,

where Λ1/2 is as in the previous proof. If U is pd, then Λ has positive diagonal entries, so

Λ−1 = Diag (λ−1
1 ; . . . ; λ−1

n )

exists, and QΛ−1QT is the inverse of U , and is pd. (We won’t prove uniqueness.) ut

Corollary 2 If 0 6= u ∈ IRn, then uuT is psd. (And all psd rank-one matrices are of this
form—see HW1.)

Corollary 3 Mn
+ and Mn

++ are convex cones. Mn
+ is closed and pointed (that is, contains no

one-dimensional subspaces) and its interior is Mn
++.

Proof: Mn
+ is defined by the homogeneous linear (in U) inequalities

zT Uz ≥ 0, ∀z ∈ IRn.

Hence, we see that Mn
+ is a closed convex cone.

Mn
++ is defined by the strict homogeneous linear inequalities

zT Uz > 0, ∀0 6= z ∈ IRn,

so Mn
++ is a convex cone.

If U ∈ (Mn
+) ∩ (−Mn

+), then λ(U) ≥ 0 and λ(U) ≤ 0. So, U must be 0. This shows that
Mn

+ is pointed.

If U ∈ Mn
++, then λ̂ := λmin(U) > 0. Let V ∈ Mn have ||V ||2 ≤ λ̂. Then,

zT (U + V )z = zT ((U − λ̂I) + λ̂I + V )z

≥ λ̂zT z + zT V z

≥ λ̂− λ̂ = 0,

for ‖z‖2 = 1. So, Mn
++ ⊆ int(Mn

+). Now, suppose that U /∈ Mn
++. Then, there exists a nonzero

vector z such that zT Uz ≤ 0. But then

zT (U − εzzT )z ≤ 0− ε(zT z)2 < 0

for all ε > 0, which shows that U /∈ int(Mn
+). Hence, int(Mn

+) = Mn
++. ut
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Fact 8 If U � 0 (resp., U � 0), then ujj ≥ 0 (resp., ujj > 0) for all j = 1, . . . , n, and if
ujj = 0, then ujk = 0 for all k.

Fact 9 If U � 0, then PUP T is psd for all P ∈ IRm×n. If U � 0 and P has full row rank, then
PUP T � 0. Hence, if P is a permutation matrix, we see that every principal rearrangement of
U is psd (resp., pd) if U is psd (resp., if U is pd).

If

U =

[
U11 U12

U21 U22

]
� 0, (resp., � 0),

then U11 � 0 (resp., � 0), and similarly for every principal submatrix of U .
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