Today, we will cover a few important facts about symmetric matrices and look at the problem of minimizing the maximum eigenvalue of a matrix as an SDP problem in dual form.

First, we recall the primal and dual forms of SDP:

$$\begin{array}{ll} \min & C \bullet X \\ s.t. & \mathcal{A}X = b \\ X \succeq 0, \end{array} & (i.e., A_i \bullet X = b_i, \forall i = 1, \dots, m) & (P) \\ max & b^T y \\ s.t. & \mathcal{A}^* y + S = C \\ S \succ 0. \end{array} & (where \mathcal{A}^* y = \sum_i y_i A_i) & (D) \\ \end{array}$$

Everything you ever want to know about symmetric matrices

Fact 1 If $P, Q \in \mathbb{R}^{m \times n}$, then

$$P \bullet Q := \operatorname{trace} (P^T Q) = \operatorname{trace} (Q P^T)$$
$$= \operatorname{trace} (Q^T P) = \operatorname{trace} (P Q^T)$$
$$= \sum_i \sum_j p_{ij} q_{ij},$$

even though P^TQ and QP^T have different sizes ($n \times n$ and $m \times m$ respectively).

Fact 2 \mathcal{A} and \mathcal{A}^* are adjoint mappings:

$$(\mathcal{A}X)^T y = (\mathcal{A}^* y) \bullet X.$$

Fact 3 If P is a nonsingular $n \times n$ real matrix, then U is psd (respectively, pd) if and only if PUP^T is psd (resp., pd).

Fact 4 Suppose $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix; then

 $(QUQ^T) \bullet (QVQ^T) = U \bullet V.$

More generally, if $P \in \mathbb{R}^{n \times n}$ is nonsingular, then

$$(P^{-T}UP^{-1}) \bullet (PVP^{T}) = U \bullet V.$$

(Generalization of $(Q^T u)^T (Q^T v) = (P^{-1}u)^T (Pv) = u^T v.)$

Proof:

$$(P^{-T}UP^{-1}) \bullet (PVP^{T}) = \text{trace} (P^{-T}UP^{-1}PVP^{T}), \text{ by definition}$$
$$= \text{trace} (P^{-T}UVP^{T})$$
$$= \text{trace} (UVP^{T}P^{-T}), \text{ by Fact 1}$$
$$= \text{trace} (UV) = U \bullet V.$$

 \Box Note. Facts 3 and 4 show that (P) is equivalent to:

min
$$(P^{-T}CP^{-1}) \bullet \hat{X}$$

s.t. $(P^{-T}A_iP^{-1}) \bullet \hat{X} = b_i, \forall i = 1, ..., m$
 $\hat{X} \succeq 0.$

This problem arises from the change of variables $\hat{X} = PXP^T$. Thus the primal variable X transforms in a different way from the data C and the A_i 's and the dual slack matrix S transforms in the same way as the data.

Fact 5 If $Y \in \mathbb{M}^n$, then there are an orthogonal $Q \in \mathbb{R}^{n \times n}$ and a diagonal $\Lambda \in \mathbb{R}^{n \times n}$ such that $U = Q \Lambda Q^T$.

Notation. For a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ whose diagonal entries are $\lambda_1, \ldots, \lambda_n$, we write:

$$\Lambda = \operatorname{Diag}\left(\lambda\right),$$

where λ is the vector $(\lambda_1; \ldots; \lambda_n)$. We also use the notation

$$\operatorname{diag}\left(U\right) := (u_{11}; \ldots; u_{nn}),$$

for any matrix $U \in \mathbb{R}^{n \times n}$. This is the adjoint mapping of Diag.

If $Q = [q_1, \ldots, q_n]$ (that is, q_i is its *i*th column vector), then

$$UQ = Q\Lambda = [\lambda_1 q_1, \dots, \lambda_n q_n].$$

Hence, looking at the *i*th column of UQ and $Q\Lambda$,

$$Uq_i = \lambda_i q_i$$

So, the q_i 's and λ_i 's are the eigenvectors and eigenvalues of U. We call $Q\Lambda Q^T$ the eigenvalue decomposition of U.

We will usually assume that $\lambda_1 \geq \ldots \geq \lambda_n$, and then

$$\lambda =: \lambda(U), \ \Lambda =: \Lambda(U).$$

Fact 6 The following are norms on \mathbb{M}^n :

• The 2-norm/operator norm,

$$||U||_{2} := \max\{||Uz||_{2} | ||z|| = 1\}$$

= $||\Lambda(U)||_{2}$
= $\max\{|\lambda_{i}(U)|\}$
= $||\lambda(U)||_{\infty};$

• the Frobenius norm,

$$||U||_{F} := (U \bullet U)^{1/2})$$

= $(\Lambda(U) \bullet \Lambda(U))^{1/2})$
= $||\lambda(U)||_{2}$
= $||\operatorname{vec}(U)||_{2} = ||\operatorname{svec}(U)||_{2},$

• the nuclear norm or trace norm,

$$||U||_* := ||\lambda(U)||_1.$$

Note. The following observation motivates why $\|\cdot\|_*$ is called the trace norm:

trace
$$(U)$$
 = $\sum_{i} u_{ii} = I \bullet U = I \bullet \Lambda(U)$
= $\sum_{i} \lambda_i(U).$

Fact 7 (Theorem 1) For $U \in \mathbb{M}^n$, the following are equivalent:

- (a) U is psd (resp., pd);
- (b) $z^T Y z \ge 0$ for all $z \in \mathbb{R}^n$ (resp., $z^T Y z > 0$ for all nonzero $z \in \mathbb{R}^n$);
- (c) $\lambda(u) \ge 0$ (resp., $\lambda(u) > 0$); and
- (d) $U = P^T P$ for some $P \in \mathbb{R}^{n \times n}$ (resp., for some nonsingular $P \in \mathbb{R}^{n \times n}$)

Proof: (a) \Leftrightarrow (b) by definition. For (b) \Leftrightarrow (c), note that if $U = Q\Lambda Q^T$, then $z^T U z = z^T Q\Lambda Q^T z = \sum_i \lambda_i \tilde{z}_i$, where $\tilde{z} = Q^T z$. Next, (d) \Rightarrow (b) because $z^T U z = z^T P^T P z = ||Pz||_2^2 \ge 0$ for all z. For the reverse, let $U = Q\Lambda Q^T$ and let $P = Q\Lambda^{1/2}Q^T$, where $\Lambda^{1/2} := \text{Diag}(\sqrt{\lambda_1}; \ldots; \sqrt{\lambda_n})$. \Box

Example 1 (Eigenvalue optimization) Suppose that U(y) depends linearly (affinely) on $y \in \mathbb{R}^m$ and we want to choose y to minimize the maximum eigenvalue of U(y). Introduce $\eta \in \mathbb{R}$ and note that

$$\lambda_{\max}(U) \leq \eta$$

$$\Leftrightarrow \lambda_{\max}(U - \eta I) \leq 0$$

$$\Leftrightarrow \lambda_{\min}(\eta I - U) \geq 0$$

$$\Leftrightarrow \eta I - U \succeq 0.$$

So, the problem of finding $\min(\lambda_{\max}(U(y)))$ can be formulated as the following SDP in dual form:

$$-\max \qquad -\eta$$

s.t.
$$-\eta I + U(y) \preceq 0.$$

Corollary 1 Every psd matrix U has a (unique) psd square root $U^{1/2}$, with $U^{1/2}U^{1/2} = U$. Every pd matrix U is nonsingular, and its inverse is pd.

Proof: If $U = Q\Lambda Q^T$, then set:

$$U^{1/2} := Q\Lambda^{1/2}Q^T,$$

where $\Lambda^{1/2}$ is as in the previous proof. If U is pd, then Λ has positive diagonal entries, so

$$\Lambda^{-1} = \operatorname{Diag}\left(\lambda_1^{-1}; \ldots; \lambda_n^{-1}\right)$$

exists, and $Q\Lambda^{-1}Q^T$ is the inverse of U, and is pd. (We won't prove uniqueness.)

Corollary 2 If $0 \neq u \in \mathbb{R}^n$, then uu^T is psd. (And all psd rank-one matrices are of this form—see HW1.)

Corollary 3 \mathbb{M}^n_+ and \mathbb{M}^n_{++} are convex cones. \mathbb{M}^n_+ is closed and <u>pointed</u> (that is, contains no one-dimensional subspaces) and its interior is \mathbb{M}^n_{++} .

Proof: \mathbb{M}^n_+ is defined by the homogeneous linear (in U) inequalities

 $z^T U z \ge 0, \ \forall z \in \mathbf{R}^n.$

Hence, we see that \mathbb{M}^n_+ is a closed convex cone.

 \mathbb{M}^n_{++} is defined by the strict homogeneous linear inequalities

$$z^T U z > 0, \ \forall 0 \neq z \in \mathbb{R}^n,$$

so \mathbb{M}^{n}_{++} is a convex cone.

If $U \in (\mathbb{M}^n_+) \cap (-\mathbb{M}^n_+)$, then $\lambda(U) \ge 0$ and $\lambda(U) \le 0$. So, U must be 0. This shows that \mathbb{M}^n_+ is pointed.

If $U \in \mathbb{M}^n_{++}$, then $\hat{\lambda} := \lambda_{\min}(U) > 0$. Let $V \in \mathbb{M}^n$ have $||V||_2 \leq \hat{\lambda}$. Then,

$$z^{T}(U+V)z = z^{T}((U-\hat{\lambda}I)+\hat{\lambda}I+V)z$$

$$\geq \hat{\lambda}z^{T}z+z^{T}Vz$$

$$\geq \hat{\lambda}-\hat{\lambda}=0,$$

for $||z||_2 = 1$. So, $\mathbb{M}_{++}^n \subseteq \operatorname{int}(\mathbb{M}_+^n)$. Now, suppose that $U \notin \mathbb{M}_{++}^n$. Then, there exists a nonzero vector z such that $z^T U z \leq 0$. But then

$$z^T (U - \epsilon z z^T) z \le 0 - \epsilon (z^T z)^2 < 0$$

for all $\epsilon > 0$, which shows that $U \notin \operatorname{int}(\mathbb{M}^n_+)$. Hence, $\operatorname{int}(\mathbb{M}^n_+) = \mathbb{M}^n_{++}$. \Box

Fact 8 If $U \succeq 0$ (resp., $U \succ 0$), then $u_{jj} \ge 0$ (resp., $u_{jj} > 0$) for all j = 1, ..., n, and if $u_{jj} = 0$, then $u_{jk} = 0$ for all k.

Fact 9 If $U \succeq 0$, then PUP^T is psd for all $P \in \mathbb{R}^{m \times n}$. If $U \succ 0$ and P has full row rank, then $PUP^T \succ 0$. Hence, if P is a permutation matrix, we see that every principal rearrangement of U is psd (resp., pd) if U is psd (resp., if U is pd). If

$$U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \succeq 0, \ (resp., \ \succ 0),$$

then $U_{11} \succeq 0$ (resp., $\succ 0$), and similarly for every principal submatrix of U.