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Today, we will cover a few important facts about symmetric matrices and look at the problem
of minimizing the maximum eigenvalue of a matrix as an SDP problem in dual form.
First, we recall the primal and dual forms of SDP:

min CeX
s.t. AX =0 (e, A;jo X =0;,Vi=1,...,m) (P)
X =0,
max by
st. A'y+S5=C (where A*y =Y.y, A;) (D)
S = 0.

Everything you ever want to know about symmetric ma-
trices

Fact 1 If P,Q € R™", then

Pe(Q := trace(PTQ) = trace (QP")
= trace (QT P) = trace (PQ")

= Z Zpijqz‘j7
i
even though PTQ and QPT have different sizes (n x n and m x m respectively).
Fact 2 A and A* are adjoint mappings:
(AX)"y = (Ay) o X.

Fact 3 If P is a nonsingular n x n real matriz, then U is psd (respectively, pd) if and only if
PUPT s psd (resp., pd).

Fact 4 Suppose Q € R"™™" is an orthogonal matriz; then
(QUQT) e (QVQT) =U e V.
More generally, if P € R™™" is nonsingular, then
(P7'UP™") o (PVPT)=UseV.
(Generalization of (QTu)T (Q™) = (P~'w)" (Pv) = uTv.)
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Proof:

(PTUP™") o (PVPT) = trace (P~"UP'PVP"), by definition
= trace (P TUVPT)
= trace (UVPTP ) , by Fact 1
= trace (UV) =

O
Note. Facts 3 and 4 show that (P) is equivalent to:
min  (P~TCP™') e X
s.t. (P_TAZ-P_l) o X =0b,Vi=1,...,m
X = 0.
This problem arises from the change of variables X = PXPT. Thus the primal variable

X transforms in a different way from the data C' and the A;’s and the dual slack matrix S
transforms in the same way as the data.

Fact 5 IfY € M", then there are an orthogonal Q € R™" and a diagonal A € R™" such that
U= QAQ".

Notation. For a diagonal matrix A € R™™" whose diagonal entries are Ay, ..., \,, we write:
A = Diag (1)),
where A is the vector (Ay;...;\,). We also use the notation

diag (U) := (u11; .. - ; Unn),

for any matrix U € R™". This is the adjoint mapping of Diag.
If Q=lq,-..,q] (that is, ¢; is its ith column vector), then

UQ = QA = [)\16]17 SRR )\nQn]
Hence, looking at the ¢th column of UQ and QA,
Uqi = \igi.

So, the ¢;’s and \;’s are the eigenvectors and eigenvalues of U. We call QAQ? the eigenvalue
decomposition of U.
We will usually assume that Ay > ... > \,, and then

A= AU), A=:AU).

Fact 6 The following are norms on M":



e The 2-norm/operator norm,
WUl = max{[[Uz]]2 | [|2]| =1}
IAU)] 2
= max{|\(U)[}
= [IAMU)]loo;

e the Frobenius norm,
1Ullr = (UeU)'?)
= (AU) e AU)?)
= [IAU)]l2
= |vec(U)]|2 = [[svec(U)|l2,

e the nuclear norm or trace norm,

WU = AL

Note. The following observation motivates why || - || is called the trace norm:

trace (U) = Zuii:IoU:]oA(U)
= 2_X(0).

Fact 7 (Theorem 1) For U € M", the following are equivalent:
(a) U is psd (resp., pd);
(b) 2TY2 >0 for all z € R™ (resp., 2TYz > 0 for all nonzero z € R");
(¢c) AMu) >0 (resp., N(u) > 0); and
(d) U = PTP for some P € R™" (resp., for some nonsingular P € R™")

Proof: (a) < (b) by definition. For (b) < (c), note that if U = QAQT, then 27Uz =
ZTQAQTz = Y7 Nz, where z = QTz. Next, (d) = (b) because z'Uz = TPTPz =
|[Pz||2 > 0 for all z. For the reverse, let U = QAQT and let P = QAY2QT, where AY? :=
Diag (VA1;...;3V/A,). O
Example 1 (Eigenvalue optimization) Suppose that U(y) depends linearly (affinely) on
y € R™ and we want to choose y to minimize the mazimum eigenvalue of U(y). Introduce
n € R and note that



So, the problem of finding min(Anax(U(y))) can be formulated as the following SDP in dual
form:

— max —n
st. —nI+U(y) =0.

Corollary 1 Every psd matriz U has a (unique) psd square root U2, with UY2U'Y? = U.
Every pd matriz U is nonsingular, and its inverse is pd.

Proof: If U = QAQ”, then set:
U1/2 — QA1/2QT7
where A'/? is as in the previous proof. If U is pd, then A has positive diagonal entries, so
At =Diag (A\[Y;. A

exists, and QA7'QT is the inverse of U, and is pd. (We won’t prove uniqueness.) 0O

Corollary 2 If 0 # u € R", then uu® is psd. (And all psd rank-one matrices are of this
form—see HW1.)

Corollary 3 M’} and M7 are convex cones. M} is closed and pointed (that is, contains no
one-dimensional subspaces) and its interior is M}, .

Proof: M is defined by the homogeneous linear (in U) inequalities
TUz>0, Vz € R™.

Hence, we see that M} is a closed convex cone.
M | is defined by the strict homogeneous linear inequalities

2TUz >0, V0+# 2z € R",

so M}, is a convex cone.

If U e (M})N(—M?%), then A(U) > 0 and A(U) < 0. So, U must be 0. This shows that
M is pointed.

If U € M, then A := A\yin(U) > 0. Let V € M" have ||V||, < A. Then,

dU+V)z = ZT(U=MN)+ A +V)z
> M2 4 2TV
> A—A=0,
for ||z|ls = 1. So, M1, C int(M). Now, suppose that U ¢ M . Then, there exists a nonzero
vector z such that 27Uz < 0. But then
(U —e22M)2 <0 —e(272)? <0

for all € > 0, which shows that U ¢ int(M}). Hence, int(M7}) = M7} . O
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Fact 8 If U = 0 (resp., U > 0), then uj; > 0 (resp., uj; > 0) for all j = 1,...,n, and if
uj; =0, then u;, =0 for all k.

Fact 9 IfU = 0, then PUPT is psd for all P € R™"™. IfU = 0 and P has full row rank, then
PUPT = 0. Hence, if P is a permutation matriz, we see that every principal rearrangement of
U is psd (resp., pd) if U is psd (resp., if U is pd).
If
U — { Un Up

.
Us, Uzz] =0, (resp., = 0),

then U1y = 0 (resp., = 0), and similarly for every principal submatriz of U.



