
Semidefinite Programming Lecture 1
OR 6327 Spring 2012 January 24, 2012
Scribe: Mike Todd

This course will be concerned with semidefinite programming, the study of optimization
problems that include constraints that certain matrices be positive semidefinite. We will con-
fine ourselves to problems where all other constraints and functions are linear (or sometimes
quadratic). The subject also goes by the name of linear matrix inequalities in control theory.
I am generally assuming mathematical maturity, i.e., some linear algebra and real analysis.
Familiarity with linear programming at a graduate level (like ORIE 6300) and numerical linear
algebra (like CS 6210) will be useful but not essential.

I can be reached at 229 Rhodes Hall, at mjt7@cornell.edu, miketodd@orie.cornell.edu,
miketodd@cs.cornell.edu, or at 255-9135. There is a crude web site for the course at
people.orie.cornell.edu/∼miketodd/or6327/or6327.html

A rough outline for the course is:

• Introduction to SDP problems;

• Applications;

• Duality;

• the Central Path; and

• Algorithms (mostly interior-point methods).

We will be concentrating on SDP problems in primal standard form and in the corresponding
dual form. The problem in primal form can be written as

minX C •X
(P ) Ai •X = bi, i = 1, . . . ,m,

X � 0,

where the data C, Ai, i = 1, . . . ,m, are real symmetric n×n matrices while b is a real m-vector
and the variable X is a real symmetric n×n matrix. (There are also interesting SDP problems
where instead the matrices above are complex Hermitian matrices instead of real symmetric,
but we’ll confine ourselves to the real case for simplicity.)

Here U • V := trace (UT V ) =
∑

j

∑
k ujkvjk for any two matrices of the same dimensions,

and U � 0 means that matrix U is symmetric and positive semidefinite (abbreviated psd), i.e.,
that zT Uz is nonnegative for all z. We also write U � 0 to mean U is positive definite (pd),
i.e., zT Uz is positive for all nonzero z; V � W or W � V for V −W � 0; and similarly V � W
or W ≺ V for V −W � 0.

Using the same data, we can construct an SDP problem in dual form:

maxy bT y∑m
i=1 yiAi � C;
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the constraint can alternatively be written C−
∑m

i=1 yiAi � 0. This is a linear matrix inequality
on the variable y: a requirement that a matrix depending linearly (by which we mean affinely!)
on some variables be psd.

It is convenient to introduce a slack matrix S and rewrite the problem as

maxy,S bT y
(D)

∑
i yiAi + S = C,

S � 0.

Here the variable y is a real m-vector while S is a real symmetric n× n matrix.
We have been a little coy in calling (D) a problem in dual form rather than the problem

dual to (P ), but it will be a while before we establish that it is the Lagrangian dual or prove
strong duality (under appropriate conditions). We will (almost) show weak duality below.

Our problems (P ) and (D) above can be compared to the usual primal-dual pair for linear
programming:

minx cT x maxy,s bT y
aT

i x = bi, i = 1, . . . ,m,
∑

i aiyi + s = c,
x ≥ 0, s ≥ 0.

Here the ai’s, c, x, and s are n-vectors, and the inequality is as usual interpreted componentwise.
Let us introduce a little more notation:

• Rm denotes real m-dimensional Euclidean space, viewed as the space of real column m-
vectors (all our vectors will be columns, so we can distinguish between inner products
uT v and outer products (rank-one matrices) uvT ); Rm×n denotes the space of real m by
n matrices;

• Mn denotes the space of real symmetric n× n matrices, while

• Mn
+ and Mn

++ denote its subsets of psd and pd matrices, respectively;

• A denotes the linear mapping from Mn to Rm defined by

AX := (Ai •X)m
i=1, while

• A∗ denotes the (adjoint) linear mapping from Rm to Mn defined by

A∗y :=
∑

i

yiAi

(so A and A∗ replace the usual m× n matrix A in the primal-dual pair of LPs above).

Now we can write our problems more compactly as

minX C •X maxy,S bT y
(P ) AX = b, (D) A∗y + S = C,

X � 0, S � 0.

We can mirror the proof of weak duality for linear programming:
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Proposition 1 (Weak Duality) Suppose X and (y, S) are feasible for (P ) and (D) respectively.
Then

C •X − bT y = S •X ≥ 0,

so that objective function values of primal feasible solutions always dominate those of dual
feasible solutions.

Proof: We again have an (almost) one-line proof:

C •X − bT y = (A∗y + S) •X − (AX)T y = (
∑

i yiAi + S) •X − ((Ai •X)m
1 )T y

= S •X ≥ 0.

Here we use the linearity in each argument of the expression U •V and also the fact (established
later this week) that U • V is nonnegative when both U and V are psd. ut

As a corollary, feasible X and (y, S) are optimal if their objective values are equal, which
holds iff S •X or X •S is zero. (Thus “No SeX Please, We’re British” or “No eXcesS of primal
objective over dual” are sufficient conditions for optimality.)

By stacking its columns one above another, we can convert any m × n matrix P into a
vector

vec(P ) := (p11; p21; . . . ; pm1; p12, p22; . . . ; pm2; . . . ; p1n; p2n; . . . ; pmn),

where we use the MATLAB-like notation (z1; z2; . . . ; zr) to denote a column vector with the
appropriate components. (We also use this notation to stack column vectors or matrices colum-
nwise.) Then if p = vec(P ), q = vec(Q), we have pT q = P •Q. For symmetric n× n matrices,
this representation is wasteful (and not onto), so instead we use

svec(U) := (u11;
√

2u12; u22;
√

2u13;
√

2u23; u33; . . . ; unn),

where only the entries on and above the diagonal are used and the
√

2 factors are chosen so
that we still have svec(U)T svec(V ) = U •V for symmetric matrices U and V . This embeds Mn

into Rn(n+1)/2 isometrically. Using this embedding, we can write (P ) and (D) above as vector
optimization problems, but usually we stick to the matrix notation for clarity. (As above, we
try to reserve P , Q, L, and R for possibly nonsymmetric matrices; other upper-case Roman
letters usually refer to symmetric matrices.)

A more general vector optimization problem is the conic programming problem (and its
dual form)

minx cT x maxy,s bT y
aT

i x = bi, i = 1, . . . ,m,
∑

i aiyi + s = c,
x ∈ K, s ∈ K∗.

where K is a closed convex cone in Rn and K∗ is the dual cone defined by

K∗ := {s ∈ Rn : sT x ≥ 0 for all x ∈ K}.

It is easy to see that weak duality holds for this pair of problems also. In SDP, instead of K
and K∗, we have the cone of psd matrices (in both places), so it will be key to show that this
cone is self-dual, i.e., equal to its dual.
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This is a universal form for convex optimization problems since any arbitrary convex prob-
lem,

minx f(x)
(CP ) x ∈ C,

where f is a convex function and C a convex set, can be expressed as a conic program as follows:

i. We can assume that the objective function is linear, since (CP ) is equivalent to

min(x,ξ) ξ
f(x)− ξ ≤ 0,

(x, ξ) ∈ C̄,

where C̄ := C × R.

ii. We can assume that the constraints are in conic form, since

minx cT x
x ∈ C,

is equivalent to

min(x,τ) cT x
τ = 1,

(x, τ) ∈ K = {(x, τ)|τ > 0, x
τ
∈ C}.
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We conclude the lecture with a little feel for what the cone of psd matrices looks like. First
consider the case n = 2, and look at the set

{(x; y; z) ∈ R3 :

[
x y
y z

]
� 0}.

This set is defined by the inequalities x ≥ 0, z ≥ 0, and xz ≥ y2, and the last can also be
written ((x + z)/2)2 − ((x − z)/2)2 ≥ y2, or, in the presence of the other two constraints,
(x + z)/2 ≥ ‖((x − z)/2; y)‖2. This can be viewed (after a little scaling) as a right circular
cone in 3-dimensional space, with its axis in the direction (1; 0; 1); it is sometimes called the
ice-cream, second-order, or Lorentz cone. We see that, while it has extreme rays, it has in fact
an infinite number of them.

Next let us consider the case n = 3, but restrict ourselves to psd matrices whose diagonal
entries are ones. These are correlation matrices, and the corresponding set is the elliptope. It
is defined by

{(x; y; z) ∈ R3 :

 1 x y
x 1 z
y z 1

 � 0}.

Pictures of this “inflated tetrahedron” or “humbug” can be found at the two websites
http://www-user.tu-chemnitz.de/∼helmberg/semidef.html,
http://www.convexoptimization.com/dattorro/elliptope−and−fantope.html,
where you can see that it has four sharp “vertices” but otherwise a generally smooth boundary.
The first of these websites is a very useful reporitory of information about SDP.

Next time we will present a very simple instance of the SDP in dual form to give an idea of
its applicability, and list (and prove some of) a number of very useful facts about symmetric
matrices.
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