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This course will be concerned with semidefinite programming, the study of optimization
problems that include constraints that certain matrices be positive semidefinite. We will con-
fine ourselves to problems where all other constraints and functions are linear (or sometimes
quadratic). The subject also goes by the name of linear matrix inequalities in control theory.
I am generally assuming mathematical maturity, i.e., some linear algebra and real analysis.
Familiarity with linear programming at a graduate level (like ORIE 6300) and numerical linear
algebra (like CS 6210) will be useful but not essential.

I can be reached at 229 Rhodes Hall, at mjt7@cornell.edu, miketodd@orie.cornell.edu,
miketodd@cs.cornell.edu, or at 255-9135. There is a crude web site for the course at
people.orie.cornell.edu/~miketodd/or6327/0r6327 .html

A rough outline for the course is:

Introduction to SDP problems;

Applications;

Duality;
e the Central Path; and

e Algorithms (mostly interior-point methods).

We will be concentrating on SDP problems in primal standard form and in the corresponding
dual form. The problem in primal form can be written as

miny CeX
(P) A10X = bl', izl,...,m,
X = 0,
where the data C', A;, i = 1,...,m, are real symmetric n X n matrices while b is a real m-vector

and the variable X is a real symmetric n X n matrix. (There are also interesting SDP problems
where instead the matrices above are complex Hermitian matrices instead of real symmetric,
but we’ll confine ourselves to the real case for simplicity.)

Here U o V' := trace (UTV) = 37, 5=, wjrvjy, for any two matrices of the same dimensions,
and U > 0 means that matrix U is symmetric and positive semidefinite (abbreviated psd), i.e.,
that 27Uz is nonnegative for all z. We also write U = 0 to mean U is positive definite (pd),
i.e., 27Uz is positive for all nonzero z; V.= W or W <V for V —W > 0; and similarly V = W
or W <VforV—-—W 0.

Using the same data, we can construct an SDP problem in dual form:

max, bly

Yoy =G
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the constraint can alternatively be written C'— > v;A; = 0. This is a linear matriz inequality
on the variable y: a requirement that a matrix depending linearly (by which we mean affinely!)
on some variables be psd.

It is convenient to introduce a slack matriz S and rewrite the problem as

max,s by
(D) YviAi + S

C,
S 0

Y I

Here the variable y is a real m-vector while S is a real symmetric n x n matrix.

We have been a little coy in calling (D) a problem in dual form rather than the problem
dual to (P), but it will be a while before we establish that it is the Lagrangian dual or prove
strong duality (under appropriate conditions). We will (almost) show weak duality below.

Our problems (P) and (D) above can be compared to the usual primal-dual pair for linear
programming;:

min, 'z maxy g bly
T, _ C _
air = b,i=1,...,m, Y.y + s = ¢
z > 0, s > 0.

Here the a;’s, ¢, x, and s are n-vectors, and the inequality is as usual interpreted componentwise.
Let us introduce a little more notation:

e R™ denotes real m-dimensional Euclidean space, viewed as the space of real column m-
vectors (all our vectors will be columns, so we can distinguish between inner products

uTv and outer products (rank-one matrices) uv®); R™*" denotes the space of real m by

n matrices;
e M" denotes the space of real symmetric n x n matrices, while
e M" and M | denote its subsets of psd and pd matrices, respectively;
e A denotes the linear mapping from M" to R™ defined by
AX = (A; o X)), while
e A* denotes the (adjoint) linear mapping from R™ to M" defined by

Aty = Z yiA

(so A and A* replace the usual m x n matrix A in the primal-dual pair of LPs above).

Now we can write our problems more compactly as

miny CeX max, s bly
(P) AX = b (D) Ay + § = C,
X = 0, S = 0

We can mirror the proof of weak duality for linear programming:



Proposition 1 (Weak Duality) Suppose X and (y,S) are feasible for (P) and (D) respectively.
Then
CeX —bly=SeX >0,

so that objective function values of primal feasible solutions always dominate those of dual
feasible solutions.

Proof: We again have an (almost) one-line proof:

CeX —bly = (Ay+5)eX — (AX)Ty
= SeX

(3o vidi +5) ¢ X — ((A; 0 X)) Ty
0.

AVANT

Here we use the linearity in each argument of the expression U eV and also the fact (established
later this week) that U e V' is nonnegative when both U and V are psd. O

As a corollary, feasible X and (y,.S) are optimal if their objective values are equal, which
holds iff Se X or X e S is zero. (Thus “No SeX Please, We're British” or “No eXcesS of primal
objective over dual” are sufficient conditions for optimality.)

By stacking its columns one above another, we can convert any m X n matrix P into a
vector

vec(P) := (P11, p21; - - - 5 Dm1; P12, P22 - - i D2} - - -3 Pins D2ns - - - D)

where we use the MATLAB-like notation (z1;29;...;2,) to denote a column vector with the
appropriate components. (We also use this notation to stack column vectors or matrices colum-
nwise.) Then if p = vec(P), ¢ = vec(Q), we have p’q = P o Q). For symmetric n x n matrices,
this representation is wasteful (and not onto), so instead we use

svec(U) = (u11; \/§U12; U223 \/§U13§ \/§U23; U33; - - - Unp),s

where only the entries on and above the diagonal are used and the V2 factors are chosen so
that we still have svec(U)Tsvec(V) = U e V for symmetric matrices U and V. This embeds M"
into R""*1/2 jsometrically. Using this embedding, we can write (P) and (D) above as vector
optimization problems, but usually we stick to the matrix notation for clarity. (As above, we
try to reserve P, (), L, and R for possibly nonsymmetric matrices; other upper-case Roman
letters usually refer to symmetric matrices.)

A more general vector optimization problem is the conic programming problem (and its
dual form)

min, c’x max, by
T, _ C_ _
ajrx = b,i=1,...,m, dYuayi + s = ¢
r € K, s € K.

where K is a closed convex cone in R™ and K* is the dual cone defined by
K*:={seR": 5"z >0foral xc K}.

It is easy to see that weak duality holds for this pair of problems also. In SDP, instead of K
and K*, we have the cone of psd matrices (in both places), so it will be key to show that this
cone is self-dual, i.e., equal to its dual.



This is a universal form for convex optimization problems since any arbitrary convex prob-
lem,
min, f(x)
(CP) r € C,

where f is a convex function and C' a convex set, can be expressed as a conic program as follows:
i. We can assume that the objective function is linear, since (C'P) is equivalent to

min(g ¢

where C' := C x R.
ii. We can assume that the constraints are in conic form, since

min, ¢’z

x € C,

is equivalent to

(z,7) € K={(z,7)]r>0,2cC}



We conclude the lecture with a little feel for what the cone of psd matrices looks like. First
consider the case n = 2, and look at the set

{(z;y;2) e R®: B ‘Z} = 0}.

This set is defined by the inequalities z > 0, z > 0, and zz > 2, and the last can also be
written ((x + 2)/2)* — ((x — 2)/2)* > %?, or, in the presence of the other two constraints,
(x+2)/2 > ||((x — 2)/2;y)||2. This can be viewed (after a little scaling) as a right circular
cone in 3-dimensional space, with its axis in the direction (1;0;1); it is sometimes called the
ice-cream, second-order, or Lorentz cone. We see that, while it has extreme rays, it has in fact
an infinite number of them.

Next let us consider the case n = 3, but restrict ourselves to psd matrices whose diagonal
entries are ones. These are correlation matrices, and the corresponding set is the elliptope. 1t

is defined by

{(z;y;2) e R*: = 0}.
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Pictures of this “inflated tetrahedron” or “humbug” can be found at the two websites
http://www-user.tu-chemnitz.de/~helmberg/semidef .html,
http://www.convexoptimization.com/dattorro/elliptope_and fantope.html,
where you can see that it has four sharp “vertices” but otherwise a generally smooth boundary.
The first of these websites is a very useful reporitory of information about SDP.

Next time we will present a very simple instance of the SDP in dual form to give an idea of
its applicability, and list (and prove some of) a number of very useful facts about symmetric
matrices.



