OR 6327: Semidefinite Programming. Spring 2012.
Homework Set 4. Due: Thursday April 19.

1. Assume $X \succ 0, S \succ 0$, and P is invertible. Suppose that the scaled matrices $P X P^{T}$ and $P^{-T} S P^{-1}$ commute. Show that $M X S$, where $M=P^{T} P$, is symmetric and positive definite, and that the MZ search directions given by this P at the iterate (X, y, S) are well-defined.
2. In this question, all operators are restricted to \mathbb{M}^{n}.
a) If G and H are $n \times n$ matrices, show that the adjoint of $G \odot H$ is $G^{T} \odot H^{T}$, i.e., $U \bullet(G \odot H) V=\left(G^{T} \odot H^{T}\right) U \bullet V$ for all $U, V \in \mathbb{M}^{n}$.
b) If G and H are $n \times n$ matrices, show that $(G \odot H)(J \odot J)=(G J \odot H J)$ and $(J \odot J)(G \odot H)=(J G \odot J H)$.
c) Suppose $G, H \in \mathbb{M}^{n}$, with eigenvalues $\left(\lambda_{i}\right)_{1}^{n}$ and $\left(\mu_{j}\right)_{1}^{n}$ respectively. Show that, if G and H commute, then $G \odot H$ has eigenvalues $\frac{1}{2}\left(\lambda_{i} \mu_{j}+\lambda_{j} \mu_{i}\right), 1 \leq i \leq j \leq n$. (You may want to start first with the case that G and H are diagonal.)
3. It appears that computing the scaling point W for X and S requires two eigenvalue decomposions, one of S to get $S^{ \pm 1 / 2}$ and then a second of $S^{1 / 2} X S^{1 / 2}$ to get its square root. Show that it suffices to compute a Cholesky factorization of S and then a single eigenvalue decomposition.
4. Suppose you know that all feasible solutions of a standard primal form SDP problem (P) satisfy $I \bullet X \leq \gamma$ for some positive γ. Show that (P) can be written in an equivalent way so that its dual is the problem of minimizing the maximum eigenvalue of a matrix depending linearly on some parameters.
5. a) Suppose q is a unit eigenvector corresponding to the largest eigenvalue of $C-\mathcal{A}^{*} y$. Let $f(y):=\lambda_{\max }\left(C-\mathcal{A}^{*} y\right)$. Show that $-\mathcal{A}\left(q q^{T}\right)$ is a subgradient of f at y.
b) More generally, suppose that q is a unit vector with $q^{T}\left(C-\mathcal{A}^{*} y\right) q \geq \lambda_{\max }(C-$ $\left.\mathcal{A}^{*} y\right)-\epsilon$ for some nonnegative ϵ. Show that $-\mathcal{A}\left(q q^{T}\right)$ is an ϵ-subgradient of f at y, i.e., that $f(z) \geq f(y)+\left(-\mathcal{A}\left(q q^{T}\right)\right)^{T}(z-y)-\epsilon$ for all z.
