
Mathematical Programming Lecture 23
OR 630 Fall 2005 November 17, 2005
Instructor: Mike Todd Scribe: Chris Provan

Deeper Into the Ellipsoid Method

Given the polyhedron Q := {x ∈ IRm : AT x ≤ b} where we assume:
(1) Q ⊆ B(0, R) = {x ∈ IRm : ‖x‖ ≤ R} (Q possibly empty) and
(2) if Q 6= ∅ then Q ⊇ B(x̂, r) = {x ∈ IRm : ‖x− x̂‖ ≤ r} for some (unknown) x̂ ∈ IRm

and some (known) 0 < r < R,
our goal is to find a feasible point in Q or show that Q = ∅.

Figure 1: A two-dimensional polyhedron Q satisfying the initial assumptions for the ellipsoid
method

To close in on a feasible point, we will construct a shrinking sequence of ellipsoids expressed
as E(z, B) := {x ∈ IRm : (x−z)T B−1(x−z) ≤ 1} for some center z ∈ IRm and some B ∈ IRm×m

with B symmetric and positive definite (i.e. ∀v 6= 0 : vT Bv > 0 ⇔ the eigenvalues of B are all
positive) in the following manner:

Step 0: Set z0 = 0 and B0 = R2I. Then Q ⊆ E(z0, B0) =: E0.
Step k + 1,k ≥ 0: Given Q ⊆ E(zk, Bk) =: Ek, if zk ∈ Q then we have a feasible point -
STOP. If zk /∈ Q and k is ”large enough” (see below) then we can conclude that Q is empty
- STOP. Otherwise, generate Ek+1 := E(zk+1, Bk+1) by choosing some a = ai 6= 0 where
aT

i zk > bi (i.e. zk violates the ith constraint of Q), and letting Ek+1 be the minimum volume

ellipsoid such that Ek+1 ⊇ E
1/2
k := {x ∈ Ek : aT x ≤ aT zk}. Clearly we have Q ⊆ E

1/2
k ⊆ Ek+1,
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so we move on to the next iteration.

How large does k have to be for us to determine that Q is empty? If vol(·) is the
m-dimensional volume then let V ol(·) be the scaled m-dimensional volume, i.e. V ol(·) =

vol(·)
vol(B(0,1))

. Then V ol(E0) = RmV ol(B(0, 1)) = Rm , and similarly, V ol(B(x̂, r)) = rm. So if

V ol(Ek) < rm then Ek cannot contain B(x̂, r) and thus Q must be empty. We will show later
that V ol(Ek+1) < exp( −1

2(m+1)
)V olEk, and therefore we can conclude that Q is empty when

V ol(Ek) < exp( −k
2(m+1)

)V ol(E0) ≤ rm ⇒ exp( −k
2(m+1)

)Rm ≤ rm

⇒ k ≥ 2(m + 1)m ln(R
r
).

We now prove some intermediate results that will help to establish the algorithm for an
iteration. To simplify the notation going forward, when we refer to a specific iteration going
from Ek to Ek+1, we will drop any subscript k and use + in place of k + 1 (E+ := Ek+1, etc).

Lemma 1 If B is symmetric and positive definite then it has a symmetric, positive definite

square root B1/2 with B1/2B1/2 = B. Moreover, V ol(E(z, B)) =
√

det(B).

Proof: We can leverage what we know about numbers and apply this first to diagonal
matrices and then to symmetric matrices. B can be factorized into B = QDQT where Q is an
orthogonal matrix (QT Q = I) and D is a diagonal matrix. Moreover, the columns of Q are the
eigenvectors of B and the diagonal entries of D are its eigenvalues, and thus all djj are positive.

Then setting

D1/2 =


√

d11 0
. . .

0
√

dmm


and B1/2 = QD1/2QT gives

B1/2B1/2 = (QD1/2QT )(QD1/2QT ) = Q(D1/2ID1/2)QT = QDQT = B.

Now note that

x ∈ E(z, B) ⇔ (x− z)T B−1(x− z) ≤ 1 ⇔ (B−1/2(x− z))T (B−1/2(x− z)) ≤ 1 ⇔ x = z + B1/2w

for some w ∈ B(0, 1). So defining X(w) := z + B1/2w gives

V ol(E(z, B)) =

∫
x∈E(z,B)

1dx

vol(B(0,1))

=

∫
w∈B(0,1)

1|det(B1/2)|dw

vol(B(0,1))

= |det(B1/2)|vol(B(0,1))
vol(B(0,1))

= |det(B1/2)|
=

√
det(B) .ut
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Lemma 1 confirms our earlier comment that V ol(E0) = Rm.

Lemma 2 If B ∈ IRm×m is symmetric and positive definite and a ∈ IRm is non-zero then

B̄ := B − σBaaT B
aT Ba

is symmetric and positive definite for σ < 1 with det(B̄) = (1− σ)det(B) and

B̄−1 = B−1 + ( σ
1−σ

)( aaT

aT Ba
).

Proof: aT Ba > 0, so B̄ is well-defined and clearly symmetric. We also have

B̄ = B1/2(I − σ B1/2aaT B1/2

(B1/2a)T (B1/2a)
)B1/2

= B1/2(I − σ uuT

uT u
)B1/2

for u = B1/2a. (I − σ uuT

uT u
) has an eigenvalue of (1 − σ) > 0 associated with the eigenvector

u and eigenvalue 1 > 0 with multiplicity (m − 1) associated with the (m − 1)-dimensional
subspace orthogonal to u, so it is positive definite with determinant (1 − σ). Then ∀v 6= 0,

vT B̄v = (B1/2v)T (I − σ uuT

uT u
)(B1/2v) > 0, so B̄ is positive definite, and

det(B̄) = det(B1/2)det(I − σ uuT

uT u
)det(B1/2)

= (1− σ)det(B).

Finally, B̄ = B + vwT for v = −σ Ba
aT Ba

and w = Ba, thus

B̄−1 = B−1 − B−1vwT B−1

1+wT B−1v

= B−1 +
σ B−1BaaT BB−1

aT Ba

1−σ aT BB−1Ba

aT Ba

= B−1 + ( σ
1−σ

)( aaT

aT Ba
).

ut

Lemma 3 For any a 6= 0, the minimum of aT x over x ∈ E(z, B) is aT z −
√

aT Ba and is
attained by x = z − Ba√

aT Ba
.

Proof: By Cauchy-Schwartz, if we minimize (B1/2a)T w over the unit ball B(0, 1) then the

optimal solution is −
√

aT Ba and is attained by w = − B1/2a√
aT Ba

. If we apply the transformation

X(w) as in the proof of Lemma 1 then we have the desired result. ut
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Figure 2: The transformation used in the proof of Lemma 3.

We are now ready to look at the algorithm for performing an iteration.

Theorem 1 Given an ellipsoid E = E(z, B) and 0 6= a ∈ IRm, the minimum volume ellipsoid
containing E1/2 = {x ∈ E : aT x ≤ aT z} is E+ = E(z+, B+) for

z+ := z − τ Ba√
aT Ba

and

B+ := δ(B − σBaaT B
aT Ba

)

where τ = 1
m+1

, δ = m2

m2−1
, and σ = 2

m+1
. Moreover,

V ol(E+)
V ol(E)

< exp( −1
2(m+1)

).

But this theorem is just the special case where α = 0 of:

Theorem 2 Given an ellipsoid E = E(z, B) and 0 6= a ∈ IRm, the minimum volume ellipsoid
containing Eα = {x ∈ E : aT x ≤ aT z − α

√
aT Ba} for − 1

m
≤ α < 1 is E+ = E(z+, B+) for

z+ := z − τ Ba√
aT Ba

and

B+ := δ(B − σBaaT B
aT Ba

)

where τ = 1+mα
m+1

, δ = (1−α2)m2

m2−1
, and σ = 2(1+mα)

(m+1)(1+α)
. Also,

V ol(E+)
V ol(E)

= ( m
m+1

)( m2

m2−1
)

m−1
2 (1− α)(1− α2)

m−1
2 .

For α = 0, this ratio is less than exp( −1
2(m+1)

).
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Figure 3: An illustration of Theorem 2. Note that the parallel lines are the linear constraints
discussed in the proof.

Proof: We will not prove that E+ is the minimum volume ellipsoid containing Eα, but we
will show that the volume ratio between E and E+ for α = 0 holds as in the theorem, and thus
our earlier conclusions regarding the necessary number of iterations are valid.

We begin by noting that x ∈ Eα implies that x satisfies the quadratic constraint
(x − z)T B−1(x − z) ≤ 1 and the linear constraint aT x ≤ aT z − α

√
aT Ba. But from Lemma

3, we know that any x ∈ E also satisfies the linear constraint aT x ≥ aT z −
√

aT Ba. Setting
ā = a√

aT Ba
, combining the two linear inequalities, and writing in terms of (x − z) gives us

a second quadratic inequality, (āT (x − z) + α)(āT (x − z) + 1) ≤ 0. Now take a weighted
combination of the two quadratic constraints, multiplying the first by (1 − σ) and the second
by σ. We are left with

(x− z)T ((1− σ)B−1 + σāāT )(x− z) + σ(1 + α)āT (x− z) ≤ (1− σ)− σα .

We will complete this proof in the next lecture.
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Mathematical Programming Homework 11
OR 630 Fall 2005 Due December 2, 2005

1. a) Suppose that E(z+, B+) is the minimum volume ellipsoid containing

{x ∈ E(z, B) : aT x ≤ aT z − α(aT Ba)
1
2},

where α > −1/m and 0 6= a ∈ IRm. Show that

aT z − α(aT Ba)
1
2 = aT z+ +

1

m
(aT B+a)

1
2 ,

i.e., the “depth” of the constraint that was used to make the cut is exactly −1/m in the new
ellipsoid.

b) Suppose we apply the ellipsoid method to try to find a point in

{x ∈ IR2 : x1 ≤
1

2
, −x1 ≤ −1

2
, −x2 ≤ −1

4
, x2 ≤

1

2
},

starting with E0 := {x ∈ IR2 : ‖x‖ ≤ 1}. At each iteration, we choose as the cut to define the
new ellipsoid the constraint aT

i x ≤ bi with maximum depth

αi :=
aT

i z − bi

(aT
i Bai)

1
2

,

stopping if all αi’s are nonpositive, and using the deep cut method (i.e., the ellipsoid is updated
as in (a)).

(i) What are the depths of all the constraints, and what cut is chosen, at the first iteration?
(ii) What are the depths of all the constraints, and what cut is chosen, at the second

iteration?

2. Let A ∈ IRm×n have rank m, and let PA := I − AT (AAT )−1A.
a) Show that PA = P T

A = P 2
A and hence that uT PAu = ‖PAu‖2 for every u ∈ IRn. (So PA is

positive semidefinite: uT PAu ≥ 0 for all u.)
b) Show that PAv = 0 for every v in the range space of AT , and PAv = v for every v in the

null space of A.
3. Consider the standard-form LP problem and its dual, where A ∈ IRm×n has rank m, and

suppose x ∈ F0(P ) and (y, s) ∈ F0(D). Let µ = xT s/n, and suppose that xjsj ≥ γµ for all j,
for some positive γ. Suppose (∆x, ∆y, ∆s) is the solution to

AT ∆y + ∆s = 0,
A∆x = 0,
S∆x + X∆s = σµe−XSe,

for some 0 ≤ σ ≤ 1. Let (x(α), y(α), s(α)) := (x, y, s) + α(∆x, ∆y, ∆s) for 0 ≤ α ≤ 1.
a) Show that ∆xT ∆s = 0 and that µ(α) := x(α)T s(α)/n = (1− α + ασ)µ.
b) Let ᾱ := max{α̂ ∈ [0, 1] : X(α)S(α)e ≥ γµ(α)e for all α ∈ [0, α̂]}, and let (x+, y+, s+) :=

(x(ᾱ), y(ᾱ), s(ᾱ)). Show that either x+ is optimal in (P ) and (y+, s+) in (D), or x+ ∈ F0(P )
and (y+, s+) ∈ F0(D), with only the second possibility if σ > 0.
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