Deeper Into the Ellipsoid Method

Given the polyhedron $Q := \{x \in \mathbb{R}^m : A^T x \leq b\}$ where we assume:

- (1) $Q \subseteq B(0, R) = \{x \in \mathbb{R}^m : ||x|| \le R\}$ (Q possibly empty) and
- (2) if $Q \neq \emptyset$ then $Q \supseteq B(\hat{x}, r) = \{x \in \mathbb{R}^m : ||x \hat{x}|| \le r\}$ for some (unknown) $\hat{x} \in \mathbb{R}^m$ and some (known) 0 < r < R,

our goal is to find a feasible point in Q or show that $Q = \emptyset$.

Figure 1: A two-dimensional polyhedron Q satisfying the initial assumptions for the ellipsoid method

To close in on a feasible point, we will construct a shrinking sequence of ellipsoids expressed as $E(z, B) := \{x \in \mathbb{R}^m : (x-z)^T B^{-1} (x-z) \le 1\}$ for some center $z \in \mathbb{R}^m$ and some $B \in \mathbb{R}^{m \times m}$ with B symmetric and positive definite (i.e. $\forall v \neq 0 : v^T B v > 0 \Leftrightarrow$ the eigenvalues of B are all positive) in the following manner:

Step 0: Set $z_0 = 0$ and $B_0 = R^2 I$. Then $Q \subseteq E(z_0, B_0) =: E_0$.

Step k + 1, k \geq 0: Given $Q \subseteq E(z_k, B_k) =: E_k$, if $z_k \in Q$ then we have a feasible point - **STOP**. If $z_k \notin Q$ and k is "large enough" (see below) then we can conclude that Q is empty - **STOP**. Otherwise, generate $E_{k+1} := E(z_{k+1}, B_{k+1})$ by choosing some $a = a_i \neq 0$ where $a_i^T z_k > b_i$ (i.e. z_k violates the *i*th constraint of Q), and letting E_{k+1} be the minimum volume ellipsoid such that $E_{k+1} \supseteq E_k^{1/2} := \{x \in E_k : a^T x \leq a^T z_k\}$. Clearly we have $Q \subseteq E_k^{1/2} \subseteq E_{k+1}$, so we move on to the next iteration.

How large does k have to be for us to determine that Q is empty? If $vol(\cdot)$ is the m-dimensional volume then let $Vol(\cdot)$ be the scaled m-dimensional volume, i.e. $Vol(\cdot) = \frac{vol(\cdot)}{vol(B(0,1))}$. Then $Vol(E_0) = R^m Vol(B(0,1)) = R^m$, and similarly, $Vol(B(\hat{x},r)) = r^m$. So if $Vol(E_k) < r^m$ then E_k cannot contain $B(\hat{x},r)$ and thus Q must be empty. We will show later that $Vol(E_{k+1}) < exp(\frac{-1}{2(m+1)})VolE_k$, and therefore we can conclude that Q is empty when

$$Vol(E_k) < exp(\frac{-k}{2(m+1)})Vol(E_0) \le r^m \quad \Rightarrow exp(\frac{-k}{2(m+1)})R^m \le r^m \\ \Rightarrow k \ge 2(m+1)m\ln(\frac{R}{r}).$$

We now prove some intermediate results that will help to establish the algorithm for an iteration. To simplify the notation going forward, when we refer to a specific iteration going from E_k to E_{k+1} , we will drop any subscript k and use + in place of k + 1 ($E_+ := E_{k+1}$, etc).

Lemma 1 If B is symmetric and positive definite then it has a symmetric, positive definite square root $B^{1/2}$ with $B^{1/2}B^{1/2} = B$. Moreover, $Vol(E(z, B)) = \sqrt{\det(B)}$.

Proof: We can leverage what we know about numbers and apply this first to diagonal matrices and then to symmetric matrices. B can be factorized into $B = QDQ^T$ where Q is an orthogonal matrix $(Q^TQ = I)$ and D is a diagonal matrix. Moreover, the columns of Q are the eigenvectors of B and the diagonal entries of D are its eigenvalues, and thus all d_{jj} are positive.

Then setting

$$D^{1/2} = \begin{pmatrix} \sqrt{d_{11}} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & \sqrt{d_{mm}} \end{pmatrix}$$

and $B^{1/2} = Q D^{1/2} Q^T$ gives

$$B^{1/2}B^{1/2} = (QD^{1/2}Q^T)(QD^{1/2}Q^T) = Q(D^{1/2}ID^{1/2})Q^T = QDQ^T = B.$$

Now note that

$$x \in E(z, B) \Leftrightarrow (x - z)^T B^{-1}(x - z) \le 1 \Leftrightarrow (B^{-1/2}(x - z))^T (B^{-1/2}(x - z)) \le 1 \Leftrightarrow x = z + B^{1/2} u$$

for some $w \in B(0,1)$. So defining $X(w) := z + B^{1/2}w$ gives

$$Vol(E(z, B)) = \frac{\int_{x \in E(z, B)} 1dx}{vol(B(0, 1))}$$

= $\frac{\int_{w \in B(0, 1)} 1|det(B^{1/2})|dw}{vol(B(0, 1))}$
= $|det(B^{1/2})| \frac{vol(B(0, 1))}{vol(B(0, 1))}$
= $|det(B^{1/2})|$
= $\sqrt{det(B)}$.

Lemma 1 confirms our earlier comment that $Vol(E_0) = R^m$.

Lemma 2 If $B \in \mathbb{R}^{m \times m}$ is symmetric and positive definite and $a \in \mathbb{R}^m$ is non-zero then

$$\bar{B} := B - \sigma \frac{Baa^TB}{a^TBa}$$

is symmetric and positive definite for $\sigma < 1$ with $det(\bar{B}) = (1 - \sigma)det(B)$ and

$$\bar{B}^{-1} = B^{-1} + \left(\frac{\sigma}{1-\sigma}\right) \left(\frac{aa^T}{a^T B a}\right).$$

Proof: $a^T B a > 0$, so \overline{B} is well-defined and clearly symmetric. We also have

$$\begin{split} \bar{B} &= B^{1/2} (I - \sigma \frac{B^{1/2} a a^T B^{1/2}}{(B^{1/2} a)^T (B^{1/2} a)}) B^{1/2} \\ &= B^{1/2} (I - \sigma \frac{u u^T}{u^T u}) B^{1/2} \end{split}$$

for $u = B^{1/2}a$. $(I - \sigma \frac{uu^T}{u^T u})$ has an eigenvalue of $(1 - \sigma) > 0$ associated with the eigenvector u and eigenvalue 1 > 0 with multiplicity (m - 1) associated with the (m - 1)-dimensional subspace orthogonal to u, so it is positive definite with determinant $(1 - \sigma)$. Then $\forall v \neq 0$, $v^T \bar{B}v = (B^{1/2}v)^T (I - \sigma \frac{uu^T}{u^T u})(B^{1/2}v) > 0$, so \bar{B} is positive definite, and

$$det(\bar{B}) = det(B^{1/2})det(I - \sigma \frac{uu^T}{u^T u})det(B^{1/2})$$
$$= (1 - \sigma)det(B).$$

Finally, $\bar{B} = B + vw^T$ for $v = -\sigma \frac{Ba}{a^T Ba}$ and w = Ba, thus

$$\bar{B}^{-1} = B^{-1} - \frac{B^{-1}vw^T B^{-1}}{1+w^T B^{-1}v}$$
$$= B^{-1} + \frac{\sigma \frac{B^{-1}Baa^T BB^{-1}}{a^T Ba}}{1-\sigma \frac{a^T BB^{-1}Ba}{a^T Ba}}$$
$$= B^{-1} + \left(\frac{\sigma}{1-\sigma}\right) \left(\frac{aa^T}{a^T Ba}\right).$$

Lemma 3 For any $a \neq 0$, the minimum of $a^T x$ over $x \in E(z, B)$ is $a^T z - \sqrt{a^T B a}$ and is attained by $x = z - \frac{Ba}{\sqrt{a^T B a}}$.

Proof: By Cauchy-Schwartz, if we minimize $(B^{1/2}a)^T w$ over the unit ball B(0,1) then the optimal solution is $-\sqrt{a^T B a}$ and is attained by $w = -\frac{B^{1/2}a}{\sqrt{a^T B a}}$. If we apply the transformation X(w) as in the proof of Lemma 1 then we have the desired result. \Box

Figure 2: The transformation used in the proof of Lemma 3.

We are now ready to look at the algorithm for performing an iteration.

Theorem 1 Given an ellipsoid E = E(z, B) and $0 \neq a \in \mathbb{R}^m$, the minimum volume ellipsoid containing $E^{1/2} = \{x \in E : a^T x \leq a^T z\}$ is $E_+ = E(z_+, B_+)$ for

$$z_{+} := z - \tau \frac{Ba}{\sqrt{a^{T}Ba}} and$$
$$B_{+} := \delta(B - \sigma \frac{Baa^{T}B}{a^{T}Ba})$$

where $\tau = \frac{1}{m+1}$, $\delta = \frac{m^2}{m^2-1}$, and $\sigma = \frac{2}{m+1}$. Moreover,

$$\frac{Vol(E_+)}{Vol(E)} < \exp(\frac{-1}{2(m+1)}).$$

But this theorem is just the special case where $\alpha = 0$ of:

Theorem 2 Given an ellipsoid E = E(z, B) and $0 \neq a \in \mathbb{R}^m$, the minimum volume ellipsoid containing $E_{\alpha} = \{x \in E : a^T x \leq a^T z - \alpha \sqrt{a^T B a}\}$ for $-\frac{1}{m} \leq \alpha < 1$ is $E_+ = E(z_+, B_+)$ for

$$z_{+} := z - \tau \frac{Ba}{\sqrt{a^{T}Ba}} and$$
$$B_{+} := \delta(B - \sigma \frac{Baa^{T}B}{\sigma^{T}Ba})$$

where $\tau = \frac{1+m\alpha}{m+1}$, $\delta = \frac{(1-\alpha^2)m^2}{m^2-1}$, and $\sigma = \frac{2(1+m\alpha)}{(m+1)(1+\alpha)}$. Also,

$$\frac{Vol(E_{+})}{Vol(E)} = \left(\frac{m}{m+1}\right) \left(\frac{m^2}{m^2-1}\right)^{\frac{m-1}{2}} (1-\alpha)(1-\alpha^2)^{\frac{m-1}{2}}.$$

For $\alpha = 0$, this ratio is less than $exp(\frac{-1}{2(m+1)})$.

Figure 3: An illustration of Theorem 2. Note that the parallel lines are the linear constraints discussed in the proof.

Proof: We will not prove that E_+ is the minimum volume ellipsoid containing E_{α} , but we will show that the volume ratio between E and E_+ for $\alpha = 0$ holds as in the theorem, and thus our earlier conclusions regarding the necessary number of iterations are valid.

We begin by noting that $x \in E_{\alpha}$ implies that x satisfies the quadratic constraint

 $(x-z)^T B^{-1}(x-z) \leq 1$ and the linear constraint $a^T x \leq a^T z - \alpha \sqrt{a^T B a}$. But from Lemma 3, we know that any $x \in E$ also satisfies the linear constraint $a^T x \geq a^T z - \sqrt{a^T B a}$. Setting $\bar{a} = \frac{a}{\sqrt{a^T B a}}$, combining the two linear inequalities, and writing in terms of (x-z) gives us a second quadratic inequality, $(\bar{a}^T (x-z) + \alpha)(\bar{a}^T (x-z) + 1) \leq 0$. Now take a weighted combination of the two quadratic constraints, multiplying the first by $(1 - \sigma)$ and the second by σ . We are left with

$$(x-z)^{T}((1-\sigma)B^{-1} + \sigma \bar{a}\bar{a}^{T})(x-z) + \sigma(1+\alpha)\bar{a}^{T}(x-z) \le (1-\sigma) - \sigma\alpha .$$

We will complete this proof in the next lecture.