
Mathematical Programming Lecture 23
OR 630 Fall 2005 November 17, 2005
Instructor: Mike Todd Scribe: Chris Provan

Deeper Into the Ellipsoid Method

Given the polyhedron Q := {x ∈ IRm : AT x ≤ b} where we assume:
(1) Q ⊆ B(0, R) = {x ∈ IRm : ‖x‖ ≤ R} (Q possibly empty) and
(2) if Q 6= ∅ then Q ⊇ B(x̂, r) = {x ∈ IRm : ‖x− x̂‖ ≤ r} for some (unknown) x̂ ∈ IRm

and some (known) 0 < r < R,
our goal is to find a feasible point in Q or show that Q = ∅.

Figure 1: A two-dimensional polyhedron Q satisfying the initial assumptions for the ellipsoid
method

To close in on a feasible point, we will construct a shrinking sequence of ellipsoids expressed
as E(z, B) := {x ∈ IRm : (x−z)T B−1(x−z) ≤ 1} for some center z ∈ IRm and some B ∈ IRm×m

with B symmetric and positive definite (i.e. ∀v 6= 0 : vT Bv > 0 ⇔ the eigenvalues of B are all
positive) in the following manner:

Step 0: Set z0 = 0 and B0 = R2I. Then Q ⊆ E(z0, B0) =: E0.
Step k + 1,k ≥ 0: Given Q ⊆ E(zk, Bk) =: Ek, if zk ∈ Q then we have a feasible point -
STOP. If zk /∈ Q and k is ”large enough” (see below) then we can conclude that Q is empty
- STOP. Otherwise, generate Ek+1 := E(zk+1, Bk+1) by choosing some a = ai 6= 0 where
aT

i zk > bi (i.e. zk violates the ith constraint of Q), and letting Ek+1 be the minimum volume

ellipsoid such that Ek+1 ⊇ E
1/2
k := {x ∈ Ek : aT x ≤ aT zk}. Clearly we have Q ⊆ E

1/2
k ⊆ Ek+1,
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so we move on to the next iteration.

How large does k have to be for us to determine that Q is empty? If vol(·) is the
m-dimensional volume then let V ol(·) be the scaled m-dimensional volume, i.e. V ol(·) =

vol(·)
vol(B(0,1))

. Then V ol(E0) = RmV ol(B(0, 1)) = Rm , and similarly, V ol(B(x̂, r)) = rm. So if

V ol(Ek) < rm then Ek cannot contain B(x̂, r) and thus Q must be empty. We will show later
that V ol(Ek+1) < exp( −1

2(m+1)
)V olEk, and therefore we can conclude that Q is empty when

V ol(Ek) < exp( −k
2(m+1)

)V ol(E0) ≤ rm ⇒ exp( −k
2(m+1)

)Rm ≤ rm

⇒ k ≥ 2(m + 1)m ln(R
r
).

We now prove some intermediate results that will help to establish the algorithm for an
iteration. To simplify the notation going forward, when we refer to a specific iteration going
from Ek to Ek+1, we will drop any subscript k and use + in place of k + 1 (E+ := Ek+1, etc).

Lemma 1 If B is symmetric and positive definite then it has a symmetric, positive definite

square root B1/2 with B1/2B1/2 = B. Moreover, V ol(E(z, B)) =
√

det(B).

Proof: We can leverage what we know about numbers and apply this first to diagonal
matrices and then to symmetric matrices. B can be factorized into B = QDQT where Q is an
orthogonal matrix (QT Q = I) and D is a diagonal matrix. Moreover, the columns of Q are the
eigenvectors of B and the diagonal entries of D are its eigenvalues, and thus all djj are positive.

Then setting

D1/2 =


√

d11 0
. . .

0
√

dmm


and B1/2 = QD1/2QT gives

B1/2B1/2 = (QD1/2QT )(QD1/2QT ) = Q(D1/2ID1/2)QT = QDQT = B.

Now note that

x ∈ E(z, B) ⇔ (x− z)T B−1(x− z) ≤ 1 ⇔ (B−1/2(x− z))T (B−1/2(x− z)) ≤ 1 ⇔ x = z + B1/2w

for some w ∈ B(0, 1). So defining X(w) := z + B1/2w gives

V ol(E(z, B)) =

∫
x∈E(z,B)

1dx

vol(B(0,1))

=

∫
w∈B(0,1)

1|det(B1/2)|dw

vol(B(0,1))

= |det(B1/2)|vol(B(0,1))
vol(B(0,1))

= |det(B1/2)|
=

√
det(B) .ut
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Lemma 1 confirms our earlier comment that V ol(E0) = Rm.

Lemma 2 If B ∈ IRm×m is symmetric and positive definite and a ∈ IRm is non-zero then

B̄ := B − σBaaT B
aT Ba

is symmetric and positive definite for σ < 1 with det(B̄) = (1− σ)det(B) and

B̄−1 = B−1 + ( σ
1−σ

)( aaT

aT Ba
).

Proof: aT Ba > 0, so B̄ is well-defined and clearly symmetric. We also have

B̄ = B1/2(I − σ B1/2aaT B1/2

(B1/2a)T (B1/2a)
)B1/2

= B1/2(I − σ uuT

uT u
)B1/2

for u = B1/2a. (I − σ uuT

uT u
) has an eigenvalue of (1 − σ) > 0 associated with the eigenvector

u and eigenvalue 1 > 0 with multiplicity (m − 1) associated with the (m − 1)-dimensional
subspace orthogonal to u, so it is positive definite with determinant (1 − σ). Then ∀v 6= 0,

vT B̄v = (B1/2v)T (I − σ uuT

uT u
)(B1/2v) > 0, so B̄ is positive definite, and

det(B̄) = det(B1/2)det(I − σ uuT

uT u
)det(B1/2)

= (1− σ)det(B).

Finally, B̄ = B + vwT for v = −σ Ba
aT Ba

and w = Ba, thus

B̄−1 = B−1 − B−1vwT B−1

1+wT B−1v

= B−1 +
σ B−1BaaT BB−1

aT Ba

1−σ aT BB−1Ba

aT Ba

= B−1 + ( σ
1−σ

)( aaT

aT Ba
).

ut

Lemma 3 For any a 6= 0, the minimum of aT x over x ∈ E(z, B) is aT z −
√

aT Ba and is
attained by x = z − Ba√

aT Ba
.

Proof: By Cauchy-Schwartz, if we minimize (B1/2a)T w over the unit ball B(0, 1) then the

optimal solution is −
√

aT Ba and is attained by w = − B1/2a√
aT Ba

. If we apply the transformation

X(w) as in the proof of Lemma 1 then we have the desired result. ut
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Figure 2: The transformation used in the proof of Lemma 3.

We are now ready to look at the algorithm for performing an iteration.

Theorem 1 Given an ellipsoid E = E(z, B) and 0 6= a ∈ IRm, the minimum volume ellipsoid
containing E1/2 = {x ∈ E : aT x ≤ aT z} is E+ = E(z+, B+) for

z+ := z − τ Ba√
aT Ba

and

B+ := δ(B − σBaaT B
aT Ba

)

where τ = 1
m+1

, δ = m2

m2−1
, and σ = 2

m+1
. Moreover,

V ol(E+)
V ol(E)

< exp( −1
2(m+1)

).

But this theorem is just the special case where α = 0 of:

Theorem 2 Given an ellipsoid E = E(z, B) and 0 6= a ∈ IRm, the minimum volume ellipsoid
containing Eα = {x ∈ E : aT x ≤ aT z − α

√
aT Ba} for − 1

m
≤ α < 1 is E+ = E(z+, B+) for

z+ := z − τ Ba√
aT Ba

and

B+ := δ(B − σBaaT B
aT Ba

)

where τ = 1+mα
m+1

, δ = (1−α2)m2

m2−1
, and σ = 2(1+mα)

(m+1)(1+α)
. Also,

V ol(E+)
V ol(E)

= ( m
m+1

)( m2

m2−1
)

m−1
2 (1− α)(1− α2)

m−1
2 .

For α = 0, this ratio is less than exp( −1
2(m+1)

).
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Figure 3: An illustration of Theorem 2. Note that the parallel lines are the linear constraints
discussed in the proof.

Proof: We will not prove that E+ is the minimum volume ellipsoid containing Eα, but we
will show that the volume ratio between E and E+ for α = 0 holds as in the theorem, and thus
our earlier conclusions regarding the necessary number of iterations are valid.

We begin by noting that x ∈ Eα implies that x satisfies the quadratic constraint
(x − z)T B−1(x − z) ≤ 1 and the linear constraint aT x ≤ aT z − α

√
aT Ba. But from Lemma

3, we know that any x ∈ E also satisfies the linear constraint aT x ≥ aT z −
√

aT Ba. Setting
ā = a√

aT Ba
, combining the two linear inequalities, and writing in terms of (x − z) gives us

a second quadratic inequality, (āT (x − z) + α)(āT (x − z) + 1) ≤ 0. Now take a weighted
combination of the two quadratic constraints, multiplying the first by (1 − σ) and the second
by σ. We are left with

(x− z)T ((1− σ)B−1 + σāāT )(x− z) + σ(1 + α)āT (x− z) ≤ (1− σ)− σα .

We will complete this proof in the next lecture.
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