Mathematical Programming
OR 630 Fall 2005
Instructor: Mike Todd

Lecture 23
OR 630 Fall 2005

Deeper Into the Ellipsoid Method

Given the polyhedron $Q:=\left\{x \in \mathbb{R}^{m}: A^{T} x \leq b\right\}$ where we assume:
(1) $Q \subseteq B(0, R)=\left\{x \in \mathbb{R}^{m}:\|x\| \leq R\right\}$ (Q possibly empty) and
(2) if $Q \neq \emptyset$ then $Q \supseteq B(\hat{x}, r)=\left\{x \in \mathbf{R}^{m}:\|x-\hat{x}\| \leq r\right\}$ for some (unknown) $\hat{x} \in \mathbf{R}^{m}$ and some (known) $0<r<R$,
our goal is to find a feasible point in Q or show that $Q=\emptyset$.

Figure 1: A two-dimensional polyhedron Q satisfying the initial assumptions for the ellipsoid method

To close in on a feasible point, we will construct a shrinking sequence of ellipsoids expressed as $E(z, B):=\left\{x \in \mathbb{R}^{m}:(x-z)^{T} B^{-1}(x-z) \leq 1\right\}$ for some center $z \in \mathbb{R}^{m}$ and some $B \in \mathbf{R}^{m \times m}$ with B symmetric and positive definite (i.e. $\forall v \neq 0: v^{T} B v>0 \Leftrightarrow$ the eigenvalues of B are all positive) in the following manner:

Step 0: Set $z_{0}=0$ and $B_{0}=R^{2} I$. Then $Q \subseteq E\left(z_{0}, B_{0}\right)=: E_{0}$.
$\overline{\text { Step } \mathbf{k}}+1, \mathbf{k} \geq \mathbf{0}$: Given $Q \subseteq E\left(z_{k}, B_{k}\right)=: E_{k}$, if $z_{k} \in Q$ then we have a feasible point STOP. If $z_{k} \notin Q$ and k is "large enough" (see below) then we can conclude that Q is empty - STOP. Otherwise, generate $E_{k+1}:=E\left(z_{k+1}, B_{k+1}\right)$ by choosing some $a=a_{i} \neq 0$ where $a_{i}^{T} z_{k}>b_{i}$ (i.e. z_{k} violates the i th constraint of Q), and letting E_{k+1} be the minimum volume ellipsoid such that $E_{k+1} \supseteq E_{k}^{1 / 2}:=\left\{x \in E_{k}: a^{T} x \leq a^{T} z_{k}\right\}$. Clearly we have $Q \subseteq E_{k}^{1 / 2} \subseteq E_{k+1}$,
so we move on to the next iteration.

How large does k have to be for us to determine that Q is empty? If $\operatorname{vol}(\cdot)$ is the m-dimensional volume then let $\operatorname{Vol}(\cdot)$ be the scaled m-dimensional volume, i.e. $\operatorname{Vol}(\cdot)=$ $\frac{\operatorname{vol}(\cdot)}{\operatorname{vol}(B(0,1))}$. Then $\operatorname{Vol}\left(E_{0}\right)=R^{m} \operatorname{Vol}(B(0,1))=R^{m}$, and similarly, $\operatorname{Vol}(B(\hat{x}, r))=r^{m}$. So if $\operatorname{Vol}\left(E_{k}\right)<r^{m}$ then E_{k} cannot contain $B(\hat{x}, r)$ and thus Q must be empty. We will show later that $\operatorname{Vol}\left(E_{k+1}\right)<\exp \left(\frac{-1}{2(m+1)}\right) \operatorname{Vol} E_{k}$, and therefore we can conclude that Q is empty when

$$
\begin{aligned}
\operatorname{Vol}\left(E_{k}\right)<\exp \left(\frac{-k}{2(m+1)}\right) \operatorname{Vol}\left(E_{0}\right) \leq r^{m} & \Rightarrow \exp \left(\frac{-k}{2(m+1)}\right) R^{m} \leq r^{m} \\
& \Rightarrow k \geq 2(m+1) m \ln \left(\frac{R}{r}\right) .
\end{aligned}
$$

We now prove some intermediate results that will help to establish the algorithm for an iteration. To simplify the notation going forward, when we refer to a specific iteration going from E_{k} to E_{k+1}, we will drop any subscript k and use + in place of $k+1\left(E_{+}:=E_{k+1}\right.$, etc).

Lemma 1 If B is symmetric and positive definite then it has a symmetric, positive definite square root $B^{1 / 2}$ with $B^{1 / 2} B^{1 / 2}=B$. Moreover, $\operatorname{Vol}(E(z, B))=\sqrt{\operatorname{det}(B)}$.

Proof: We can leverage what we know about numbers and apply this first to diagonal matrices and then to symmetric matrices. B can be factorized into $B=Q D Q^{T}$ where Q is an orthogonal matrix $\left(Q^{T} Q=I\right)$ and D is a diagonal matrix. Moreover, the columns of Q are the eigenvectors of B and the diagonal entries of D are its eigenvalues, and thus all $d_{j j}$ are positive.

Then setting

$$
D^{1 / 2}=\left(\begin{array}{ccc}
\sqrt{d_{11}} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \sqrt{d_{m m}}
\end{array}\right)
$$

and $B^{1 / 2}=Q D^{1 / 2} Q^{T}$ gives

$$
B^{1 / 2} B^{1 / 2}=\left(Q D^{1 / 2} Q^{T}\right)\left(Q D^{1 / 2} Q^{T}\right)=Q\left(D^{1 / 2} I D^{1 / 2}\right) Q^{T}=Q D Q^{T}=B
$$

Now note that

$$
x \in E(z, B) \Leftrightarrow(x-z)^{T} B^{-1}(x-z) \leq 1 \Leftrightarrow\left(B^{-1 / 2}(x-z)\right)^{T}\left(B^{-1 / 2}(x-z)\right) \leq 1 \Leftrightarrow x=z+B^{1 / 2} w
$$

for some $w \in B(0,1)$. So defining $X(w):=z+B^{1 / 2} w$ gives

$$
\begin{aligned}
\operatorname{Vol}(E(z, B)) & =\frac{\int_{x \in E(z, B)} 1 d x}{\operatorname{vol}(B(0,1))} \\
& =\frac{\int_{w \in B(0,1)} 1\left|\operatorname{det}\left(B^{1 / 2}\right)\right| d w}{\operatorname{vol}(B(0,1))} \\
& =\left|\operatorname{det}\left(B^{1 / 2}\right)\right| \frac{\operatorname{vol}(B(0,1))}{\operatorname{vol}(B(0,1))} \\
& =\left|\operatorname{det}\left(B^{1 / 2}\right)\right| \\
& =\sqrt{\operatorname{det}(B)}
\end{aligned}
$$

Lemma 1 confirms our earlier comment that $\operatorname{Vol}\left(E_{0}\right)=R^{m}$.
Lemma 2 If $B \in \mathbb{R}^{m \times m}$ is symmetric and positive definite and $a \in \mathbf{R}^{m}$ is non-zero then

$$
\bar{B}:=B-\sigma \frac{B a a^{T} B}{a^{T} B a}
$$

is symmetric and positive definite for $\sigma<1$ with $\operatorname{det}(\bar{B})=(1-\sigma) \operatorname{det}(B)$ and

$$
\bar{B}^{-1}=B^{-1}+\left(\frac{\sigma}{1-\sigma}\right)\left(\frac{a a^{T}}{a^{T} B a}\right) .
$$

Proof: $a^{T} B a>0$, so \bar{B} is well-defined and clearly symmetric. We also have

$$
\begin{aligned}
\bar{B} & =B^{1 / 2}\left(I-\sigma \frac{B^{1 / 2} a a^{T} B^{1 / 2}}{\left(B^{1 / 2} a\right)^{T}\left(B^{1 / 2} a\right)}\right) B^{1 / 2} \\
& =B^{1 / 2}\left(I-\sigma \frac{u u^{T}}{u^{T} u}\right) B^{1 / 2}
\end{aligned}
$$

for $u=B^{1 / 2} a .\left(I-\sigma \frac{u u^{T}}{u^{T} u}\right)$ has an eigenvalue of $(1-\sigma)>0$ associated with the eigenvector u and eigenvalue $1>0$ with multiplicity $(m-1)$ associated with the $(m-1)$-dimensional subspace orthogonal to u, so it is positive definite with determinant $(1-\sigma)$. Then $\forall v \neq 0$, $v^{T} \bar{B} v=\left(B^{1 / 2} v\right)^{T}\left(I-\sigma \frac{u u^{T}}{u^{T} u}\right)\left(B^{1 / 2} v\right)>0$, so \bar{B} is positive definite, and

$$
\begin{aligned}
\operatorname{det}(\bar{B}) & =\operatorname{det}\left(B^{1 / 2}\right) \operatorname{det}\left(I-\sigma \frac{u T^{T}}{u^{T} u}\right) \operatorname{det}\left(B^{1 / 2}\right) \\
& =(1-\sigma) \operatorname{det}(B)
\end{aligned}
$$

Finally, $\bar{B}=B+v w^{T}$ for $v=-\sigma \frac{B a}{a^{T} B a}$ and $w=B a$, thus

$$
\begin{aligned}
\bar{B}^{-1} & =B^{-1}-\frac{B^{-1} v w^{T} B^{-1}}{1+w^{T} B^{-1} v} \\
& =B^{-1}+\frac{\sigma^{B^{-1} B a a^{T} B B^{-1}}}{1-\sigma \frac{a^{T} B a}{T^{T} B B^{-1} B a}} \\
& =B^{-1}+\left(\frac{\sigma}{1-\sigma}\right)\left(\frac{a a^{T}}{a^{T} B a}\right) .
\end{aligned}
$$

Lemma 3 For any $a \neq 0$, the minimum of $a^{T} x$ over $x \in E(z, B)$ is $a^{T} z-\sqrt{a^{T} B a}$ and is attained by $x=z-\frac{B a}{\sqrt{a^{T} B a}}$.

Proof: By Cauchy-Schwartz, if we minimize $\left(B^{1 / 2} a\right)^{T} w$ over the unit ball $B(0,1)$ then the optimal solution is $-\sqrt{a^{T} B a}$ and is attained by $w=-\frac{B^{1 / 2} a}{\sqrt{a^{T} B a}}$. If we apply the transformation $X(w)$ as in the proof of Lemma 1 then we have the desired result.

Figure 2: The transformation used in the proof of Lemma 3.

We are now ready to look at the algorithm for performing an iteration.
Theorem 1 Given an ellipsoid $E=E(z, B)$ and $0 \neq a \in \mathbb{R}^{m}$, the minimum volume ellipsoid containing $E^{1 / 2}=\left\{x \in E: a^{T} x \leq a^{T} z\right\}$ is $E_{+}=E\left(z_{+}, B_{+}\right)$for

$$
\begin{aligned}
& z_{+}:=z-\tau \frac{B a}{\sqrt{a^{T} B a}} \text { and } \\
& B_{+}:=\delta\left(B-\sigma \frac{B a a^{T} B}{a^{T} B a}\right)
\end{aligned}
$$

where $\tau=\frac{1}{m+1}, \delta=\frac{m^{2}}{m^{2}-1}$, and $\sigma=\frac{2}{m+1}$. Moreover,

$$
\frac{\operatorname{Vol}\left(E_{+}\right)}{\operatorname{Vol}(E)}<\exp \left(\frac{-1}{2(m+1)}\right) .
$$

But this theorem is just the special case where $\alpha=0$ of:
Theorem 2 Given an ellipsoid $E=E(z, B)$ and $0 \neq a \in \mathbb{R}^{m}$, the minimum volume ellipsoid containing $E_{\alpha}=\left\{x \in E: a^{T} x \leq a^{T} z-\alpha \sqrt{a^{T} B a}\right\}$ for $-\frac{1}{m} \leq \alpha<1$ is $E_{+}=E\left(z_{+}, B_{+}\right)$for

$$
\begin{aligned}
z_{+} & :=z-\tau \frac{B a}{\sqrt{a^{T} B a}} \text { and } \\
B_{+} & :=\delta\left(B-\sigma \frac{B a a^{T} B}{a^{T} B a}\right)
\end{aligned}
$$

where $\tau=\frac{1+m \alpha}{m+1}, \delta=\frac{\left(1-\alpha^{2}\right) m^{2}}{m^{2}-1}$, and $\sigma=\frac{2(1+m \alpha)}{(m+1)(1+\alpha)}$. Also,

$$
\frac{\operatorname{Vol}\left(E_{+}\right)}{\operatorname{Vol}(E)}=\left(\frac{m}{m+1}\right)\left(\frac{m^{2}}{m^{2}-1}\right)^{\frac{m-1}{2}}(1-\alpha)\left(1-\alpha^{2}\right)^{\frac{m-1}{2}} .
$$

For $\alpha=0$, this ratio is less than $\exp \left(\frac{-1}{2(m+1)}\right)$.

Figure 3: An illustration of Theorem 2. Note that the parallel lines are the linear constraints discussed in the proof.

Proof: We will not prove that E_{+}is the minimum volume ellipsoid containing E_{α}, but we will show that the volume ratio between E and E_{+}for $\alpha=0$ holds as in the theorem, and thus our earlier conclusions regarding the necessary number of iterations are valid.

We begin by noting that $x \in E_{\alpha}$ implies that x satisfies the quadratic constraint $(x-z)^{T} B^{-1}(x-z) \leq 1$ and the linear constraint $a^{T} x \leq a^{T} z-\alpha \sqrt{a^{T} B a}$. But from Lemma 3, we know that any $x \in E$ also satisfies the linear constraint $a^{T} x \geq a^{T} z-\sqrt{a^{T} B a}$. Setting $\bar{a}=\frac{a}{\sqrt{a^{T} B a}}$, combining the two linear inequalities, and writing in terms of $(x-z)$ gives us a second quadratic inequality, $\left(\bar{a}^{T}(x-z)+\alpha\right)\left(\bar{a}^{T}(x-z)+1\right) \leq 0$. Now take a weighted combination of the two quadratic constraints, multiplying the first by $(1-\sigma)$ and the second by σ. We are left with

$$
(x-z)^{T}\left((1-\sigma) B^{-1}+\sigma \bar{a} \overline{a^{T}}\right)(x-z)+\sigma(1+\alpha) \bar{a}^{T}(x-z) \leq(1-\sigma)-\sigma \alpha
$$

We will complete this proof in the next lecture.

