Mathematical Programming Lecture 23
OR 630 Fall 2005 November 17, 2005
Instructor: Mike Todd Scribe: Chris Provan

Deeper Into the Ellipsoid Method

Given the polyhedron Q := {z € R™ : ATz < b} where we assume:
(1) Q€ B(0,R) = {z € R™: ||z]| < R} (Q possibly empty) and
(2) if Q@ # 0 then @ D B(z,7) = {z € R™: ||z — || < r} for some (unknown) & € R™
and some (known) 0 < r < R,
our goal is to find a feasible point in () or show that Q = ().

G

Figure 1: A two-dimensional polyhedron @ satisfying the initial assumptions for the ellipsoid
method

To close in on a feasible point, we will construct a shrinking sequence of ellipsoids expressed
as E(z,B) :={z € R™: (x—2)TB7'(x —z) < 1} for some center 2 € R™ and some B € R™*"
with B symmetric and positive definite (i.e. Vo # 0 : v Bv > 0 < the eigenvalues of B are all
positive) in the following manner:

Step 0: Set 2o = 0 and By = R?I. Then Q C E(z, By) =: Ey.

Step k+ 1,k > 0: Given QQ C E(z, Br) =: Ey, if z;, € @ then we have a feasible point -
STOP. If 2z, ¢ @ and k is "large enough” (see below) then we can conclude that Q is empty
- STOP. Otherwise, generate Eyyq := E(zxi1, Brr1) by choosing some a = a; # 0 where
aiTzk > b; (i.e. zx violates the ith constraint of Q), and letting Ej,; be the minimum volume
ellipsoid such that Ey ; D E,i/z ={x € B} :a’x < a’z}. Clearly we have Q C E;/Q C Eiiq,

1



so we move on to the next iteration.

How large does k have to be for us to determine that @ is empty? If vol(-) is the
m-dimensional volume then let Vol(-) be the scaled m-dimensional volume, i.e. Vol(-) =
itmemy- Then Vol(Ey) = R™Vol(B(0,1)) = R™ , and similarly, Vol(B(#,7)) = r™. So if
Vol(Ey) < r™ then Ej cannot contain B(z,r) and thus ) must be empty. We will show later
that Vol(Ey41) < emp(ﬁ}rl))VOZEk, and therefore we can conclude that ) is empty when

Vol(Ey) < emp(Q(T;_k;l))Vol(Eo) <rm = exp(ﬁil))}%m <rm

=k > 2(m+ 1)mIn(£).

We now prove some intermediate results that will help to establish the algorithm for an
iteration. To simplify the notation going forward, when we refer to a specific iteration going
from Ej, to Ejy1, we will drop any subscript k& and use + in place of k + 1 (E, := Ej4, etc).

Lemma 1 If B is symmetric and positive definite then it has a symmetric, positive definite

square root B2 with B'/?BY/? = B. Moreover, Vol(E(z, B)) = \/det(B).

Proof: We can leverage what we know about numbers and apply this first to diagonal
matrices and then to symmetric matrices. B can be factorized into B = QDQT where @ is an
orthogonal matrix (Q7Q = I) and D is a diagonal matrix. Moreover, the columns of @) are the
eigenvectors of B and the diagonal entries of D are its eigenvalues, and thus all d;; are positive.

Then setting

Vdi1 0
D1/2 — .

0 Vi
and BY? = QD'Y2Q" gives
BY2BY? — (QD'2QTY(QDY2QT) = Q(DY*1DY?)Q" = QDQ" = B.
Now note that
r€E(z,B) e (r—2)TB o —2)<1e (B} (r—-2)'(BY?(zx—-2) <1l r=2+BYw
for some w € B(0,1). So defining X (w) := z + BY?w gives

dx

fz z 1
Vol(E(z,B)) = 71](6)%9’(’3?1))

B waB(0Y1)1|det(B1/2)|dw
- vol(B(0,1))

B vol(B(0,1))
= |det(B"?) | 56Ty

~ |det(BV?)
= /det(B) 0O
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Lemma 1 confirms our earlier comment that Vol(E,) = R™.

Lemma 2 If B € R™*™ is symmetric and positive definite and a € R™ is non-zero then

R . _ _BadTB
B:=B - 0275,

is symmetric and positive definite for o < 1 with det(B) = (1 — o)det(B) and

n— — o aaT
B ! =B 1+(E)(aTBa>‘
Proof: a"Ba > 0, so B is well-defined and clearly symmetric. We also have

= /24T B1/2
B = B1/2(] - O-(BBl/za)T(glma))Bl/z

= BY?(I — o> )B/?

for u = BY%a. (I — a%) has an eigenvalue of (1 — o) > 0 associated with the eigenvector
u and eigenvalue 1 > 0 with multiplicity (m — 1) associated with the (m — 1)-dimensional
subspace orthogonal to u, so it is positive definite with determinant (1 — ). Then Vv # 0,
v Bv = (BY?0)T(I — 0%)(31/%) > 0, so B is positive definite, and

det(B) = det(B'?)det(I — o4 )det(B'/?)
= (1 — 0)det(B).

Finally, B = B + vw” for v = —Uafga and w = Ba, thus
p-1 _ p-1_ B~ lwTB"!
B =B o 1+111)]%UB*11)

O_B_lBaaTBB_l
— B_l + oT Ba
1 aI'BB—1Ba
i i
a* Ba

T

= B_l + (ﬁ)<a%aBa)'

O

Lemma 3 For any a # 0, the minimum of a’x over x € E(z,B) is a'z — Va’Ba and is

; _ o Ba
attained by x = z NG

Proof: By Cauchy-Schwartz, if we minimize (B'/2a)”w over the unit ball B(0,1) then the

optimal solution is —v'a” Ba and is attained by w = —%. If we apply the transformation

X (w) as in the proof of Lemma 1 then we have the desired result. O
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Figure 2: The transformation used in the proof of Lemma 3.

We are now ready to look at the algorithm for performing an iteration.

Theorem 1 Given an ellipsoid E = E(z,B) and 0 # a € R™, the minimum volume ellipsoid
containing BY? = {x € B :a"x < a"2} is B, = E(zy, B.) for

e Ba
2y =2 — T\/mand

By = 0(B — oBse L)

a® Ba
where T = L1 § = ™ and 0 = —2—. Moreover
T om+l7 YT m2-17 T om+l ’
Vol(E4+) —1
Vol < €D (5pry)-

But this theorem is just the special case where a = 0 of:

Theorem 2 Given an ellipsoid E = E(z,B) and 0 # a € R™, the minimum volume ellipsoid
containing B, ={z € E:a"x < a’z — avaBa} for —- <o < 1is By = E(zy, By) for

e mY Ba
Zp =2 = Trg=—and

B, :=0(B — o249 B)

a® Ba

where T =

1+ma 1—a?)m? 2(1+ma
;ZH , 0= ( m2_)1 ,and o = m Also,

Vol(E m m2 ym=1 m-1
OlE) — (Lm0 (1 - a)(1 - 0?) "7

For a =0, this ratio is less than exp(Q(n;}rl)).



Figure 3: An illustration of Theorem 2. Note that the parallel lines are the linear constraints
discussed in the proof.

Proof: We will not prove that E, is the minimum volume ellipsoid containing E,, but we
will show that the volume ratio between F and E, for a = 0 holds as in the theorem, and thus
our earlier conclusions regarding the necessary number of iterations are valid.

We begin by noting that x € F, implies that z satisﬁes the quadratic constraint
(x — 2)TB~1(x — 2) < 1 and the linear constraint e’z < a’z — a\/ aTBa But from Lemma
3, we know that any z € E also satisfies the linear constraint e’z > a2 — va” Ba. Setting
a = \/TT’ combining the two linear inequalities, and writing in terms of (z — z) gives us

a second quadratic inequality, (a’(z — 2) + a)(a’(x — 2) + 1) < 0. Now take a weighted
combination of the two quadratic constraints, multiplying the first by (1 — o) and the second
by o. We are left with

(z—2)"((1 —0)B' +0aal)(x — 2) +o(1+a)a’(z — 2) < (1 —0) —oax .

We will complete this proof in the next lecture.



