Mathematical Programming Lecture 19
OR 630 Fall 2005 November 1, 2005
Notes by Nico Diener

Column and Constraint Generation

Idea The column and constraint generation algorithms exploit the fact that the revised
simplex algorithm only needs very limited access to data of the LP problem to solve some
large-scale LPs.

[lustration The one-dimensional cutting-stock problem (Chapter 6 of Bertsimas and Tsit-
siklis, Chapters 13 and 26 of Chvatal).

Problem A paper manufacturer produces paper in large rolls of width W and has a demand
for narrow rolls of widths say wq, ..., w,, where 0 < w; < W. The demand is for b; rolls of width
Ws .

Figure 1:

We want to use as few large rolls as possible to satisfy the demand. We consider patterns,
i.e., ways of cutting a large roll into smaller rolls: each pattern j corresponds to a vector
a; € R™ with a;; equal to the number of rolls of width w; in pattern j.

1

Example: a =

O = O O

If we could list all patterns say 1,2,..., N (N can be very large), then the problem would
become:

min =1 T
Y az; = b, (1)

Actually: We want x;, the number of rolls cut in pattern j, integer but we are just going to
consider the LP relaxation.

Problem N is large and A (the matrix made of columns a;) is known only implicitly:
Any vector a € R™ satisfying >~ , w;a; < W, a; > 0 and integer, defines a column of A.

Remark The columns a; in (1) can be viewed as variables in the above problem.

We consider applying the revised simplex method to (1) by generating columns as needed.
We can find an initial basic feasible solution by considering for a;,, ..., a;,.:

m*

1 0 0 (W | 0
o| |1 0 0 :
0 s 0) ey or 0 . 0
1 : (W /w]

At any time, we have a basic feasible solution using a;,, ..., a;,, and the corresponding dual
solution ¥ = B~ Te with e = (1---1)7.

This solution is optimal if all the reduced costs ¢; = ¢; — ajTy are non-negative. We want to

solve:
min{¢; : j =1,2,...,N}. (2)

In our case, we want to see if a7 < 1 for all columns a of A, so we solve:
max{yTa cwla<W,a>0,a€ N™}. (3)
a

This is called the knapsack problem (cf. question 4 on HW2: the fractional knapsack
problem).
If we can solve (3) and obtain an optimal value at most 1, then the current basic feasible
solution is optimal.
If not, its solution a = a, gives a new column with ¢, < 0 to enter the basis.

Question How to solve (3)?

One way is by using Dynamic Programming. We assume that all w;’s and W are integer
and we solve the problem with a recursive algorithm.

Let F(v) be the optimal objective value of (3) with W being replaced by v > 0 and integer.
For v < min; w;, F(v) =0, else
F(v) = max{0, max{y; + F(v—w;) :i = 1l..m,w; <wv}}
Note that the optimal knapsack with weight at most v is obtained by first filling the knapsack
with weight at most v — w; in an optimal way and then adding weight w;, for the best i, or by
not putting anything in at all.

Ilustration

e These equations calculate F'(0), F(1), ..., F(W) recursively and are called Bellman’s
equations.

e The computational complexity of the algorithm is O(mW).
e [f we remove the integer constraints, this problem becomes obvious.

e We can obtain a lower bound by rounding down the solution without integer constraints.
Chvatal describes a branch and bound method for the subproblem based on these ideas.

Remark We have described a method where we only keep the basic columns, but we could
also keep some subset J C {1,2,...,N} of the previously generated columns including the
current basic indices, and then solve:

min ZjEJ x;
Yjesairy = b, (4)
X > 0 VJ S J,

in order to obtain an optimal solution, and then use the dual solution to define (3) and then
solve it.

The solution is either optimal or we get a new column a,.

Then we can discard an arbitrary set of non-basic columns from J, add ¢ and get a new problem
of the form (4) to solve.

If we keep all the old columns, we can implement Bland’s least index rule by numbering the
new generated columns.

Note The column generation algorithm can be applied anytime (2): min¢; : j = 1...N can
be solved efficiently.

We can also apply these ideas to the dual of (1):
max{b"y : y € Q} where Q = {y € R™ : a] y < ¢;,j = 1...N} is non-empty.
The idea now is that we do not know all the constraints defining Q ahead of time, but we want
to generate them as needed.

We have the original problem:
max{b’y : a]Ty <¢j,j=1.N} (5)

and the current relaxation:
max{b’y : ajTy <c¢j,jeJ} (6)

We assume that this problem is bounded.
Motivation The Traveling Salesman Problem: the convex hull of the incidence vectors of

tours in a graph is a polytope and therefore a polyhedron. Because we don’t know all the
constraints, we generate them as needed.

We solve (6) for some J C {1,2,..., N} to get an optimal 7.
If 3 is feasible in all other constraints, then 7 is optimal in (5).
Otherwise we try to generate a violated constraint by solving:

min{c; =¢; —aly:j=1.N}. (7)

We obtain a new column a, and then we can add ¢ to J and continue. We are searching for
a cutting plane, valid for all y € Q but violated by 7.

[

Figure 2: We try to find a constraint C that is violated

This approach is hugely successful in solving (a certain class of) combinatorial optimization
problems.

Note This method is the dual of the column generation method for (1).

