
Mathematical Programming Lecture 10

OR 630 Fall 2005 September 27, 2005

Notes by Nico Diener

Last lecture, we were looking at the simplex algorithm to solve the linear programming
problem in its standard form:

minx cT x

Ax = b,

x ≥ 0.
(1)

We found a criterion for optimality of a basic feasible solution.

Before stating the theorem, let’s recall some notation:

• c = c − AT y = c − AT B−T cB;

• y = B−T cB; and

• x =

(

xB

xN

)

, the current b.f. solution.

Theorem 1 (Optimality Criterion) If for every j ∈ ν the non-basic set of indices, cj − aT
j y is

non-negative, then x is optimal for (P).
ut
We can first note that the reduced cost for a basic variable is cj = cj − aT

j y = 0 , and cj

(probably nonzero) for a non-basic one (i.e.: cB = 0, cN = cN − NT B−T cB).

We also have an equation relating ζ (the objective function value) to the values of the
non-basic variables:

ζ − cT x = cT
NB−1b or ζ − cT

NxN = ζ.

Also if we denote

• A = B−1A;

• b = B−1b;

• AB = B−1B = I; and

• AN = B−1N ,

we have that Ax = b is equivalent to Ax = b or xB + B−1NxN = b or xB + ANxN = b.
We call the columns of A: a1, ..., an so that aj = B−1aj.

We have the basic feasible solution:

x =

(

xB

xN

)

=

(

b

0

)
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corresponding to the basis matrix B. We can compute y = B−T cB and hence compute c and
finally check if cN is non-negative. In the case where there exists some negative component
related to index q: cq < 0, we want to increase xq, and at the same time, hold all the other
non-basic variables equal to zero. We get the objective function value: ζ = ζ + cqxq

To minimize the objective function we want xq as large as possible but we have to know
what happens to the basic variables when we choose a particular value for xq.

Next, we compute aq = B−1aq and we note that again if we hold all other non-basic variables
fixed: xB = b− aqxq, so as long as xB = b− aqxq remains true, our solution stay feasible. So if
the updated column aq is nonpositive: aq ≤ 0, we can make xq as large as we want.

Let’s now consider the following ray:

x(α) =

(

xB

xN

)

=

(

b

0

)

+ α

(

−aq

eq

)

where α ≥ 0 and eq denotes a vector whose components are indexed by j ∈ ν with all entries
equal to 0 except for a 1 in the row corresponding to index q.

Remark that because aq ≤ 0, we have for every α ≥ 0,

(

b

0

)

+ α

(

−aq

eq

)

≥ 0 and

Ax(α) = (B N)

(

b

0

)

+ α(B N)

(

−aq

eq

)

= b + α(−BB−1aq + aq) = b,

so the ray consists of feasible points. The objective function value is:

cT x(α) = (cT
B cT

N)

(

b

0

)

+ α(cT
B cT

B)

(

−aq

eq

)

= cT
BB−1b + α(−cT

BB−1aq + cq)

and because cT
BB−1 = yT we get: cT x(α) = ζ + α(cq − aT

q y).

Therefore if we choose q such that cq − cT
BB−1aq < 0, we have limα→∞ cT x(α) = −∞.

We therefore have an unboundedness criterion:

Theorem 2 (Unboundedness Criterion) Let x be the basic feasible solution corresponding to
the basis matrix B and let cT

BB−1 = yT .
If there is some q ∈ ν such that cq = cq − aT

q y < 0 and aq = B−1aq ≤ 0 then (P) is unbounded.

Indeed, the objective function is unbounded below on the feasible ray

(

xB

xN

)

+α

(

−B−1aq

eq

)

.

ut

Remark 1 In Theorem 1 we found an optimal solution for the dual too.
Similarly here we can find a certificate that the dual is infeasible (cf a future HW)
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The remaining case is when we choose q with cq < 0, compute aq and find that at least one
component aiq is positive.

Let’s come back to the previous example with c1 = 4:

min 4x1 +7x2 +5x3

2x1 + x2 + x3 − x4 = 5,
(E) x1 + 3x2 + x3 − x5 = 5,

x1 + x2 + 4x3 − x6 = 2,
x ≥ 0,

With basic indices β = {4, 1, 6} and non-basic indices ν = {2, 3, 5} and the basis:

B =







−1 2 0
0 1 0
0 1 −1





 , N =







1 1 0
3 1 −1
1 4 0





 , cB =







0
4
0





 .

So we find: y = B−T cB =







−1 0 0
2 1 1
0 0 −1













0
4
0





 =







0
4
0





 ,

and then cN = cN − NT y =







7
5
0





−







1 3 1
1 1 4
0 −1 0













0
4
0





 =







−5
1
4





 .

So we choose q = 2 with c2 = −5.

We want to increase x2 (the number of bananas) and compute:

a2 = B−1a2 =







−1 2 0
0 1 0
0 1 −1













1
3
1





 =







5
3
2





 .

We see that a2 is positive.

Interpretation of a2 and c2

a2 = B−1a2 therefore Ba2 = a2 = amount of all the nutrients in each banana =
∑

i∈β ai2Bi

where Bi is the ith column of B.

We can think of ai2 as a recipe of a banana. In our case: a2 =







5
3
2





, so we can make a

“synthetic banana” out of:

• 5 units of food 4,
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• 3 units of food 1, and

• 2 units of food 6.

In another way, we can make a banana out of 3 apples throwing away 5 unit of nutrient 1
(corresponding to food 4) and throwing away 2 unit of nutrient 3 (corresponding to food 6).
We obtain then a recipe of making a nonbasic food out of the basic foods.

Now let’s look at c2 = c2 − aT
2 y = c2 − cT

B(B−1a2):

• c2 is the cost of a real banana.

• B−1a2 is the recipe for a synthetic banana.

• cT
B(B−1a2) is the cost of a synthetic banana.

If c2 < 0, the real cost of a banana is less than the cost of a synthetic one.
Therefore we should eat real bananas and adjust the level of the basic foods by decreasing
according to the recipe for a banana.

So if we increase x2 to α, we find:







x1

x2

x3





 =







5
5
3





− α







5
3
2







The largest possible value for α is 1 (i.e., x4 then hits 0).
The new solution is x+ = (5; 0; 0; 5; 0; 3) + 1(−3; 1; 0;−5; 0;−2) = (2; 1; 0; 0; 0; 1)

We have a new basic feasible solution corresponding to β+ = {2, 1, 6} and basis

B+ =







1 2 0
3 1 0
1 1 −1





 .

This is effectively a basic feasible solution because the basis B+ is non singular.

Also the cost has become 15 (ζ = cT
Bb =







0
4
0





 .







5
5
3





 = 20, cq = −5, α = 1).

Let’s go back to the general case of a simplex iteration:

First we choose q ∈ ν with cq < 0 and compute aq = B−1aq.
Because we are assuming that aq is not nonpositive (otherwise we are in the unbounded case),
there exists a positive component aiq.
If we set xq to α ≥ 0 and keep all other non-basic variables at 0, the basic variables change
according to xB = b − αaq.
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We want α as large as possible (because the updated objective function is ζ = ζ + αcq), so we
choose max{α s.t. xB ≥ 0}

The maximum α is α = min{ bi

aiq
: s.t. aiq > 0} = bp

apq
for some p with apq > 0.

Note that bp ≥ 0 (because it’s a basic feasible solution) and therefore α ≥ 0.
Note that if bp 6= 0 then α > 0 and the new solution will be different from the current

one with strictly lower objective function value. Note also that if there is a p′ 6= p such that
bp′

ap′q
= bp

apq
then the new solution will have some basic variable equal to zero.

We can now “increase” xq to level α and make it a basic variable replacing the old pth basic
variable and update the set of new basic variables indices to β+ with q replacing the pth index.
The new “basis matrix” is obtained by replacing the pth column of B by aq:
B+ = (B1, B2, ..., Bp−1, aq, Bp+1, ..., Bm).

We put quotes because we don’t know yet that B+ is a basis!

Claim 1 B+ is a basis matrix.

proof:

Because aq = Baq we can build the new basic matrix by multiplying B by the identity
matrix with aq instead of the pth column:

B+ = BEp = B







































1 0 . . . 0 a1q 0 . . . 0

0 1
...

...
...

. . . 0

1
...

0 apq

...
. . .

...
...

... 1 0
0 . . . 0 anq 0 . . . 0 1







































;

these two matrices B and Ep are non-singular: the determinant of the second one is apq > 0

Remark 2 This decomposition of B+ gives a easy way to find B−1
+ and plays a key role in the

efficiency of the algorithm.

We have now a new non-negative solution x+ =

(

b

0

)

+ α

(

−aq

eq

)

, satisfying Ax = b and

having non-zeros exactly in positions corresponding to the indices of β+. Therefore x+ is the
basic feasible solution corresponding to {B+, β+}

We’ve just finished one simplex iteration.
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Mathematical Programming Homework 5

OR 630 Fall 2005 Due October 7, 2005

1. The indication for unboundedness in the simplex method shows the existence of feasible
solutions to the primal problem with objective function values unbounded below. This implies
via weak or strong duality that the dual problem is infeasible. Show how to obtain a short
certificate of the infeasibility of (D) from the quantities already computed.

2. Consider an LP problem is in the form we considered for the simplex interpretation of
the simplex method:

min{cT x : Ãx = b̃, eT x = 1, x ≥ 0},

where e ∈ IRn is a vector of ones. Suppose you have a basic feasible solution x̄ for this problem,
and you compute all the reduced costs c̄N . Show how you can obtain a lower bound on the
optimal value of the problem and hence a bound on how far x̄ is from optimality.

3. Suppose you are solving a standard form LP problem with n variables from a given basic
feasible solution, and you know that every basic solution has at most one basic variable zero.
Show that the simplex method will either terminate or improve the objective function value
within n iterations from any basic feasible solution, and deduce that it will terminate in a finite
number of iterations.
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