Last lecture, we were looking at the simplex algorithm to solve the linear programming problem in its standard form:

$$\min_{x} \begin{array}{l} c^{T}x \\ Ax = b, \\ x \ge 0. \end{array}$$
 (1)

We found a criterion for optimality of a basic feasible solution.

Before stating the theorem, let's recall some notation:

•
$$\overline{c} = c - A^T \overline{y} = c - A^T B^{-T} c_B;$$

•
$$\overline{y} = B^{-T}c_B$$
; and

• $\overline{x} = \begin{pmatrix} \overline{x}_B \\ \overline{x}_N \end{pmatrix}$, the current b.f. solution.

Theorem 1 (Optimality Criterion) If for every $j \in \nu$ the non-basic set of indices, $c_j - a_j^T \overline{y}$ is non-negative, then \overline{x} is optimal for (P).

We can first note that the reduced cost for a basic variable is $\overline{c}_j = c_j - a_j^T \overline{y} = 0$, and \overline{c}_j (probably nonzero) for a non-basic one (i.e.: $\overline{c}_B = 0$, $\overline{c}_N = c_N - N^T B^{-T} c_B$).

We also have an equation relating ζ (the objective function value) to the values of the non-basic variables:

$$\zeta - \overline{c}^T x = c_N^T B^{-1} b \text{ or } \zeta - \overline{c}_N^T x_N = \overline{\zeta}.$$

Also if we denote

- $\overline{A} = B^{-1}A;$
- $\overline{b} = B^{-1}b;$
- $\overline{A}_B = B^{-1}B = I$; and
- $\overline{A}_N = B^{-1}N$,

we have that Ax = b is equivalent to $\overline{A}x = \overline{b}$ or $x_B + B^{-1}Nx_N = \overline{b}$ or $x_B + \overline{A}_N x_N = \overline{b}$. We call the columns of \overline{A} : $\overline{a}_1, ..., \overline{a}_n$ so that $\overline{a}_j = B^{-1}a_j$.

We have the basic feasible solution:

$$\overline{x} = \left(\begin{array}{c} \overline{x}_B \\ \overline{x}_N \end{array}\right) = \left(\begin{array}{c} \overline{b} \\ 0 \end{array}\right)$$

corresponding to the basis matrix B. We can compute $\overline{y} = B^{-T}c_B$ and hence compute \overline{c} and finally check if \overline{c}_N is non-negative. In the case where there exists some negative component related to index q: $\overline{c}_q < 0$, we want to increase x_q , and at the same time, hold all the other non-basic variables equal to zero. We get the objective function value: $\zeta = \overline{\zeta} + \overline{c}_q x_q$

To minimize the objective function we want x_q as large as possible but we have to know what happens to the basic variables when we choose a particular value for x_q .

Next, we compute $\overline{a}_q = B^{-1}a_q$ and we note that again if we hold all other non-basic variables fixed: $x_B = \overline{b} - \overline{a}_q x_q$, so as long as $x_B = \overline{b} - \overline{a}_q x_q$ remains true, our solution stay feasible. So if the updated column \overline{a}_q is nonpositive: $\overline{a}_q \leq 0$, we can make x_q as large as we want.

Let's now consider the following ray:

$$x(\alpha) = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -\overline{a}_q \\ e_q \end{pmatrix}$$

where $\alpha \geq 0$ and e_q denotes a vector whose components are indexed by $j \in \nu$ with all entries equal to 0 except for a 1 in the row corresponding to index q.

Remark that because
$$\overline{a}_q \leq 0$$
, we have for every $\alpha \geq 0$, $\begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -\overline{a}_q \\ e_q \end{pmatrix} \geq 0$ and $Ax(\alpha) = (B \ N) \begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \alpha(B \ N) \begin{pmatrix} -\overline{a}_q \\ e_q \end{pmatrix} = b + \alpha(-BB^{-1}a_q + a_q) = b$,

so the ray consists of feasible points. The objective function value is:

$$c^{T}x(\alpha) = (c_{B}^{T} \ c_{N}^{T}) \begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \alpha(c_{B}^{T} \ c_{B}^{T}) \begin{pmatrix} -\overline{a}_{q} \\ e_{q} \end{pmatrix} = c_{B}^{T}B^{-1}b + \alpha(-c_{B}^{T}B^{-1}a_{q} + c_{q})$$

and because $c_B^T B^{-1} = \overline{y}^T$ we get: $c^T x(\alpha) = \overline{\zeta} + \alpha (c_q - a_q^T \overline{y}).$

Therefore if we choose q such that $c_q - c_B^T B^{-1} a_q < 0$, we have $\lim_{\alpha \to \infty} c^T x(\alpha) = -\infty$.

We therefore have an unboundedness criterion:

Theorem 2 (Unboundedness Criterion) Let \overline{x} be the basic feasible solution corresponding to the basis matrix B and let $c_B^T B^{-1} = \overline{y}^T$. If there is some $q \in \nu$ such that $\overline{c}_q = c_q - a_q^T \overline{y} < 0$ and $\overline{a}_q = B^{-1} a_q \leq 0$ then (P) is unbounded. Indeed, the objective function is unbounded below on the feasible ray $\begin{pmatrix} \overline{x}_B \\ \overline{x}_N \end{pmatrix} + \alpha \begin{pmatrix} -B^{-1}a_q \\ e_q \end{pmatrix}$.

Remark 1 In Theorem 1 we found an optimal solution for the dual too. Similarly here we can find a certificate that the dual is infeasible (cf a future HW) The remaining case is when we choose q with $\overline{c}_q < 0$, compute \overline{a}_q and find that at least one component \overline{a}_{iq} is positive.

Let's come back to the previous example with $c_1 = 4$:

With basic indices $\beta = \{4, 1, 6\}$ and non-basic indices $\nu = \{2, 3, 5\}$ and the basis:

$$B = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}, \quad N = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & -1 \\ 1 & 4 & 0 \end{pmatrix}, \quad c_B = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$$

So we find: $\overline{y} = B^{-T}c_B = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix},$
and then $\overline{c}_N = c_N - N^T \overline{y} = \begin{pmatrix} 7 \\ 5 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 & 3 & 1 \\ 1 & 1 & 4 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 4 \end{pmatrix}.$

So we choose q = 2 with $\overline{c}_2 = -5$.

We want to increase x_2 (the number of bananas) and compute:

$$\overline{a}_2 = B^{-1}a_2 = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}.$$

We see that \overline{a}_2 is positive.

Interpretation of \overline{a}_2 and \overline{c}_2

 $\overline{a}_2 = B^{-1}a_2$ therefore $B\overline{a}_2 = a_2 =$ amount of all the nutrients in each banana $= \sum_{i \in \beta} \overline{a}_{i2}B_i$ where B_i is the ith column of B.

We can think of \overline{a}_{i2} as a recipe of a banana. In our case: $\overline{a}_2 = \begin{pmatrix} 5\\ 3\\ 2 \end{pmatrix}$, so we can make a "synthetic banana" out of:

• 5 units of food 4,

- 3 units of food 1, and
- 2 units of food 6.

In another way, we can make a banana out of 3 apples throwing away 5 unit of nutrient 1 (corresponding to food 4) and throwing away 2 unit of nutrient 3 (corresponding to food 6). We obtain then a recipe of making a nonbasic food out of the basic foods.

Now let's look at $\overline{c}_2 = c_2 - a_2^T \overline{y} = c_2 - c_B^T (B^{-1}a_2)$:

- c_2 is the cost of a real banana.
- $B^{-1}a_2$ is the recipe for a synthetic banana.
- $c_B^T(B^{-1}a_2)$ is the cost of a synthetic banana.

If $\overline{c}_2 < 0$, the real cost of a banana is less than the cost of a synthetic one. Therefore we should eat real bananas and adjust the level of the basic foods by decreasing according to the recipe for a banana.

So if we increase
$$x_2$$
 to α , we find: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \\ 3 \end{pmatrix} - \alpha \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$
The largest possible value for α is 1 (i.e., x_4 then hits 0).
The new solution is $x_+ = (5; 0; 0; 5; 0; 3) + 1(-3; 1; 0; -5; 0; -2) = (2; 1; 0; 0; 0; 1)$

We have a new basic feasible solution corresponding to $\beta_+ = \{2, 1, 6\}$ and basis

$$B_{+} = \left(\begin{array}{rrrr} 1 & 2 & 0 \\ 3 & 1 & 0 \\ 1 & 1 & -1 \end{array}\right).$$

This is effectively a basic feasible solution because the basis B_+ is non singular.

Also the cost has become 15
$$(\overline{\zeta} = c_B^T \overline{b} = \begin{pmatrix} 0\\4\\0 \end{pmatrix}, \begin{pmatrix} 5\\5\\3 \end{pmatrix} = 20, \overline{c}_q = -5, \alpha = 1).$$

Let's go back to the general case of a simplex iteration:

First we choose $q \in \nu$ with $\overline{c}_q < 0$ and compute $\overline{a}_q = B^{-1}a_q$.

Because we are assuming that \overline{a}_q is not nonpositive (otherwise we are in the unbounded case), there exists a positive component \overline{a}_{iq} .

If we set x_q to $\alpha \ge 0$ and keep all other non-basic variables at 0, the basic variables change according to $x_B = \overline{b} - \alpha \overline{a}_q$.

We want α as large as possible (because the updated objective function is $\zeta = \overline{\zeta} + \alpha \overline{c}_q$), so we choose max{ α s.t. $x_B \ge 0$ }

The maximum α is $\overline{\alpha} = \min\{\frac{\overline{b}_i}{\overline{a}_{iq}} : \text{ s.t. } \overline{a}_{iq} > 0\} = \frac{\overline{b}_p}{\overline{a}_{pq}}$ for some p with $\overline{a}_{pq} > 0$. Note that $\overline{b}_p \ge 0$ (because it's a basic feasible solution) and therefore $\overline{\alpha} \ge 0$.

Note that if $\overline{b}_p \neq 0$ then $\overline{\alpha} > 0$ and the new solution will be different from the current one with strictly lower objective function value. Note also that if there is a $p' \neq p$ such that $\frac{\overline{b}_{p'}}{\overline{a}_{p'q}} = \frac{\overline{b}_p}{\overline{a}_{pq}}$ then the new solution will have some basic variable equal to zero.

We can now "increase" x_q to level $\overline{\alpha}$ and make it a basic variable replacing the old p^{th} basic variable and update the set of new basic variables indices to β_+ with q replacing the pth index. The new "basis matrix" is obtained by replacing the pth column of B by a_q :

 $B_{+} = (B_1, B_2, \dots, B_{p-1}, a_q, B_{p+1}, \dots, B_m).$

We put quotes because we don't know yet that B_+ is a basis!

Claim 1 B_+ is a basis matrix.

proof:

Because $a_q = B\overline{a}_q$ we can build the new basic matrix by multiplying B by the identity matrix with \overline{a}_q instead of the p^{th} column:

$$B_{+} = BE_{p} = B \begin{pmatrix} 1 & 0 & \dots & 0 & \overline{a}_{1q} & 0 & \dots & 0 & 0 \\ 0 & 1 & & \vdots & & & \vdots & \vdots & \vdots \\ \vdots & & \ddots & 0 & & & & & \\ & & 1 & \vdots & & & & \\ & & & 0 & \overline{a}_{pq} & & & & \\ \vdots & & & \vdots & & \ddots & \vdots & \\ \vdots & & & \vdots & & 1 & 0 & \\ 0 & \dots & 0 & \overline{a}_{nq} & 0 & \dots & 0 & 1 & \end{pmatrix};$$

these two matrices B and E_p are non-singular: the determinant of the second one is $\overline{a}_{pq} > 0$

Remark 2 This decomposition of B_+ gives a easy way to find B_+^{-1} and plays a key role in the efficiency of the algorithm.

We have now a new non-negative solution $x_{+} = \begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -\overline{a}_{q} \\ \overline{e}_{q} \end{pmatrix}$, satisfying Ax = b and having non-zeros exactly in positions corresponding to the indices of β_{+} . Therefore x_{+} is the basic feasible solution corresponding to $\{B_{+}, \beta_{+}\}$

We've just finished one simplex iteration.