
Mathematical Programming Lecture 22
OR 630 Fall 2005 November 10, 2005
Notes by Jie Chen

First, let’s talk about the complexity of algorithm. How could we show that any simplex
method is exponential? The only hope is by studying the graph (vertices, edges) of the feasible
regions of LPs.

Definition 1 Given a pointed polyhedron Q and two vertices v and w of Q, dQ(v, w) is the
smallest k such that there are vertices v0 = v, v1, . . . , vk = w of Q with [vj−1, vj] an edge of Q
for 1 ≤ j ≤ k.

Definition 2 The diameter of Q is δ(Q) := max{dQ(v, w) : v and w are vertices of Q}.

Finally:

Definition 3 ∆u(d, n) := max{δ(Q) : Q is a pointed polyhedron in <d with n facets};
∆(d, n) := max{δ(Q) : Q is a bounded polyhedron in <dwith n facets}.

In 1957, W. M. Hirsch conjectured ∆u(d, n) ≤ n− d.

Figure 1: Examples which satisfy ∆u(d, n) ≤ n− d

If n ≤ 2d, ∆u(d, n) = n − d seems best possible: since at least n − d inequalities must be

1

exchanged. Klee and Walkup (’67) showed that it is false (they constructed a particular counter
example):

∆u(d, n) ≥ n− d + min{[d
4
], [

n− d

4
]}.

But the bounded case is still open (right or wrong). It is called the Hirsch conjecture:

?∆(d, n) ≤ n− d.???

Is it polynomial or exponential? The answer (Kalai and Kleitman, 1992): It is subexponen-
tial:

∆u(d, n) ≤ (4d)log2 N = nlog2 d+2.

Log (this bound) is O(log2 n · log2 d); Log (polynomial) is linear in log2 n, log2 d; Log (expo-
nential) is linear in n, d. (We can see that the first one is between the other two, so it is
superpolynomial, but subexponential.)

Is there a “simple” simplex method that is subexponential? Kalai gave a randomized simplex
method whose expected number of steps is:

exp(K
√

n log2 d).

Here, K is an absolute constant. (For the TSP, n can be gigantic, so it may still look like an
exponential, but it is just an upper bound.)

Now, let’s talk about the complexity of problems.
Introduction to the ellipsoid method. Let’s be more precise about “what is a polynomial-

time algorithm”?

Definition 4 An instance of an optimization problem, is a feasible set F and a cost function
c : F → <. The objective is to min c over F . An optimization problem is just a set of such
instances.

The LP problem is the set of all instances where F is a polyhedron and c is a linear function.
An algorithm applies to a problem, and generates a solution for all its instances. Question:

How long does the algorithm take? For LP, an instance is defined by (A, b, c) (the data set).
We’ll require the data to be integer-valued (or equivalently rational). We can write down an
integer

Z = ±(Zk2
k + Zk−12

k−1 + · · ·+ Z02
0),

with each Zj = 0 or 1, its binary representation in k bits, where k is about dlog2 |Z|e (rounded
up).

Definition 5 size(Z) := dlog(|Z|+ 1)e+ 1, and size(A, b, c) :=
∑

i

∑
j size(aij) +

∑
i size(bi) +∑

j size(cj) = L.

This is O(min log2 U), when U bounds all |aij|′s, |bi|’s and |cj|’s.
Definition 6 A polynomial-time algorithm for a problem is one that, applied to any in-
stance of that problem, gives a solution in a number of bit operations (+,−,×, comparisons)
that is bounded by a polynomial in its size.

2

Note, if an algorithm takes a polynomial number of arithmetical operations (+,−,×,÷) on
integers whose size remains polynomial in the size of the instance, this is a polynomial-time
algorithm.

Is there a polynomial-time algorithm for LP? Yes. Khachiyan (1979,1980) showed a polynomial-
time algorithm: O(n2L) iterations, each requiring O(n2) arithmetical operations on integers of
length O(L). He used the ellipsoid algorithm, which was developed by Yudin and Nemirovski
(1976) and Shor (1977) for general convex programming.

The ellipsoid algorithm : This algorithm is applied to the feasibility form of LP : AT x ≤ b.
Assume A is an m× n matrix, so there are n inequalities in m unknowns.
A problem

minx̄ c̄T x̄
Āx̄ = b̄,

x̄ ≥ 0.

where Ā is an m̄× n̄ matrix, can be transferred into

Āx̄ ≤ b̄,
−Āx̄ ≤ −b̄,
−1x̄ ≤ 0,

ĀT ȳ ≤ c̄, (dual)
c̄T − b̄T ȳ ≤ 0. (optimal)

So it is enough to be able to “solve” AT x ≤ b.
Suppose we know,

Figure 2: Q and B(x̂, r).

Q := {x ∈ <m, AT x ≤ b} ⊆ B(0, R) = {x ∈ <m :‖ x ‖ ≤ R},

3

and, if Q is nonempty,

B(x̂, r) ⊆ Q, where B(x̂, r) = {x ∈ <m :‖ x− x̂ ‖≤ r}.

for some (unknown!!) x̂ and some 0 < r < R.
What does the algorithm do? This algorithm generates a sequence of ellipsoids:

Ek = {x ∈ <m : (x− xk)
T B−1

k (x− xk) ≤ 1},

where Bk ∈ <m×m is symmetric and positive definite, i.e., vT Bkv > 0 for all v 6= 0. So
E0 = B(0, R) ⊇ Q. At iteration k, either xk ∈ Q (great — stop! for we only need to find
a feasible solution), or find a constraint, say aT

j x ≤ bj, that is violated by xk. Then find the

Figure 3: The iteration steps.

minimum volume ellipsoid Ek+1 containing {x ∈ Ek : aT
j x ≤ aT

j xk}.

4

Key:

vol(Ek+1) < exp(− 1

2(m + 1)
)× vol(Ek).

This is the magic thing that makes everything work.

5

