Mathematical Programming	Lecture 27
OR 630 Fall 2005	December 1, 2005
Notes by An-swol Hu	

1 Path-Following Methods

Recall that, as long as $\mathcal{F}^{0}(P)$ and $\mathcal{F}^{0}(D)$ are non-empty, for each $\mu>0$ there is a (unique) solution $(x(\mu), y(\mu), s(\mu))$ to

$$
\begin{align*}
A^{T} y+s & =c \\
A x & =b \tag{1}\\
X S e & =\mu e
\end{align*}
$$

for $x>0$ and $s>0$, defining the central path. Suppose we have an approximate solution (x, y, s) to this system with $x \in \mathcal{F}^{0}(P), y \in \mathcal{F}^{0}(D)$ and $\frac{1}{\mu} X S e \approx e$, where $\mu=\frac{x^{T} s}{n}$. We want to find $(x+\Delta x, y+\Delta y, s+\Delta s)$ to approximately satisfy (1) with μ replaced by $\sigma \mu, 0 \leq \sigma \leq 1$. ($\sigma=0$ means we are trying to find the optimal solution, $\sigma=1$ means we are trying to get a better approximation to $(x(\mu), y(\mu), s(\mu))$, so usually $0<\sigma<1)$. Then, $(\Delta x, \Delta y, \Delta s)$ satisfy

$$
\begin{aligned}
A^{T} \Delta y+\Delta s & =0 \\
A \Delta x & =0 \\
S \Delta x+X \Delta s & =\sigma \mu e-X S e
\end{aligned}
$$

where in the last equation we have dropped the second order term $\Delta X \Delta S e$ to get a linear system.

What we need is to solve this $(2 n+m) \times(2 n+m)$ structured linear system. We proceed as follows:

1. Express Δs in terms of $\Delta y: \Delta s=-A^{T} \Delta y$.
2. Express Δx in terms of Δs, and hence Δy :

$$
\begin{aligned}
\Delta x & =\sigma \mu s^{-1}-x-X S^{-1} \Delta s \\
& =\sigma \mu s^{-1}-x+X S^{-1} A^{T} \Delta y
\end{aligned}
$$

where s^{-1} is the vector composed of $1 / s_{i}, i=1, \ldots, n$.
3. Substitute this into the second set of equations to get: $\left(A X S^{-1} A^{T}\right) \Delta y=b-\sigma \mu A s^{-1}$, where we have used $A x=b$. $A X S^{-1} A^{T}$ is a symmetric $m \times m$ positive definite matrix that is possibly sparse. Note also that this is primal-dual path following since we have $X S^{-1}$ in the matrix.

Solve the (Schur complement) equation for Δy, then Δs and Δx. Then, set $\left(x_{+}, y_{+}, s_{+}\right)=$ $(x, y, s)+\alpha(\Delta x, \Delta y, \Delta s)$ for some $\alpha>0$ and continue. Note: the system in 3. is very much like that used to compute the affine-scaling direction $\bar{d}:\left(A X^{2} A^{T}\right) y=A X^{2} c$, then $\bar{d}=-X^{2} c-$ $X A^{T} y$.

We need a strategy for choosing σ and α at each iteration. These are often based on staying in some neighborhood of the central path:

- $\left\|\frac{1}{\mu} X S e-e\right\|_{2} \leq \beta$, the L_{2}-neighborhood;
- $\left\|\frac{1}{\mu} X S e-e\right\|_{\infty} \leq \beta$, the L_{∞}-neighborhood;
- $\frac{1}{\mu} X S e-e \geq-(1-\gamma) e \Leftrightarrow X S e \geq \gamma \mu e$, the $L_{-\infty}$-neighborhood;
for some $0<\beta<1$ or $0<\gamma<1$.
Common strategies for doing this are:
- Let $\sigma=1-\frac{\theta}{\sqrt{n}}$ for some fixed $0<\theta<1$ and let $\alpha=1$. Then, if $\left\|\frac{1}{\mu} X S e-e\right\|_{2} \leq \beta$, $\left\|\frac{1}{\mu_{+}} X_{+} S_{+} e-e\right\|_{2} \leq \beta$. Thus, we stay in a small L_{2}-neighborhood of the central path. This gives an " $O\left(\sqrt{n} \ln \frac{1}{\epsilon}\right)$ " iteration algorithm.
- Choose $0<\sigma<1$ independent of n and let α be the largest value in $[0,1]$ such that $X(\alpha) S(\alpha) \geq \gamma \mu(\alpha) e$ for all $0 \leq \alpha \leq \bar{\alpha}$. It can be shown that $\bar{\alpha}=\Omega\left(\frac{1}{n}\right)$ and we get an " $O\left(n \ln \frac{1}{\epsilon}\right)$ " iteration algorithm. But, in practice this technique usually works better than the previous one.
- Suppose $\left\|\frac{1}{\mu} X S e-e\right\|_{2} \leq \frac{1}{4}, \sigma=0$. Choose the largest $\bar{\alpha}$ such that $\left\|\frac{1}{\mu(\alpha)} X(\alpha) S(\alpha) e-e\right\|_{2} \leq$ $\frac{1}{2}$ for $0 \leq \alpha \leq \bar{\alpha}$, and let the result be $(\hat{x}, \hat{y}, \hat{s})$. Now take a second step from this point using $\sigma=1$ and $\alpha=1$ to get $\left(x_{+}, y_{+}, s_{+}\right)$with $\left\|\frac{1}{\mu_{+}} X_{+} S_{+} e-e\right\|_{2} \leq \frac{1}{4}$. This gives an " $O\left(\sqrt{n} \ln \frac{1}{\epsilon}\right)$ " iteration algorithm, but it also has quadratic convergence.

2 Initialization

1. Use artificial variables and constraints: the primal problem (\hat{P})

$$
\begin{aligned}
\min c^{T} x+M_{1} x_{n+1} & \\
A x+(b-A e) x_{n+1} & =b \\
(e-c)^{T} x+x_{n+2} & =M_{2} \\
\hat{x}=\left(x ; x_{n+1} ; x_{n+2}\right) & \geq 0
\end{aligned}
$$

and the dual problem (\hat{D})

$$
\begin{aligned}
\max b^{T} y+M_{2} y_{m+1} & \\
A^{T} y+(e-c) y_{m+1}+s & =c \\
(b-A e)^{T} y+s_{n+1} & =M_{1} \\
y_{m+1}+s_{n+2} & =0 \\
\hat{s}=\left(s ; s_{n+1} ; s_{n+2}\right) & \geq 0 .
\end{aligned}
$$

(\hat{P}) and (\hat{D}) have strictly feasible solutions if M_{1}, M_{2} are large enough:

$$
\begin{aligned}
& \hat{x}=\left(e ; 1 ; M_{2}-(e-c)^{T} e\right)>0, \\
& \hat{y}=(0 ;-1), \\
& \hat{s}=\left(e ; M_{1} ; 1\right)>0 .
\end{aligned}
$$

2. Infeasible-interior-point methods: The "infeasible" means that $A x \neq b$ and $A^{T} y+s \neq c$ are possible and the "interior" means that $x, s>0$. We can start with, say, $x=s=e$ and $y=0$. Then, when we seek $(\Delta x, \Delta y, \Delta s)$, just compensate for the infeasible $x,(y, s)$:

$$
\begin{aligned}
A^{T} \Delta y+\Delta s & =c-A^{T} y-s \\
A \Delta x & =b-A x \\
S \Delta x+X \Delta s & =\sigma \mu e-X S e .
\end{aligned}
$$

Proceed as before. This works well in practice, but the theory is much more complicated.

3 Extensions of Interior-Point Methods (IPM's)

IPM's have been extended to many non-linear, but convex, programming problems, e.g. SDP (semi-definite programming).

$$
\begin{array}{rll}
\min C \cdot X & & \\
A_{i} \cdot X & =b_{i} & i=1, \ldots, m \\
X & \succeq 0 \quad & \text { (symmetric, positive semi-definite) }
\end{array}
$$

where $U \cdot V=\operatorname{tr}\left(U^{T} V\right)=\sum_{i} \sum_{j} u_{i j} v_{i j}$. The dual is

$$
\begin{gathered}
\max \quad b^{T} y \\
\sum_{i} y_{i} A_{i}+S=C \\
S \succeq 0
\end{gathered}
$$

This problem has a logarithmic barrier function $-\ln (\operatorname{det}(X))$ defined on symmetric, positive definite matrices. The central path is defined by dual-primal feasibility and $X S=\mu I$, but this last equation is not easy to linearize satisfactorily.

4 Summary and Overview

- Linear Programs (LP): An important class of optimization problems arising in a wide variety of resource allocation, production planning, and data-fitting applications.
- Powerful Duality Theory: Short certificate of optimality, sensitivity analysis, certificate of near optimality.
- Geometry: Polyhedral (extreme points, extreme directions), nice barrier function.
- Algorithms:
- Simplex Method: practically efficient, theoretically bad, gives optimal basis, useful for sensitivity analysis and for re-optimization.
- Ellipsoid Method: practically inefficient, theoretically good, nice implications in combinatorial optimization.
- Interior-Point Methods: practically efficient and theoretically good, give approximate dual solution but not a basis, not good for re-optimization.
- Future Courses:
- OR631: integer programming (Trotter), complexity of convex programming (Todd)
- OR632: non-linear programming (Lewis or Todd)
- OR634: combinatorial optimization (Bland)
- OR635: interior-point methods (Renegar or Todd)
- OR639: convex analysis (Lewis)
- CS621: matrix computations
- CS622: non-linear equations and optimization.

