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1 Path-Following Methods

Recall that, as long as F(P) and F°(D) are non-empty, for each g > 0 there is a (unique)
solution (), y(p), s(n)) to

ATy +s = ¢
Az = b (1)
XSe = pe

for x > 0 and s > 0, defining the central path. Suppose we have an approximate solution
(z,y,s) to this system with z € F°(P), y € F°(D) and iXSe ~ e, where p = ITTS We want
to find (z + Az, y+ Ay, s+ As) to approximately satisfy (1) with u replaced by op, 0 < o < 1.
(0 = 0 means we are trying to find the optimal solution, ¢ = 1 means we are trying to get a
better approximation to (z(u),y(u), s(i)), so usually 0 < o < 1). Then, (Azx, Ay, As) satisfy

ATAy+As = 0
AAz = 0
SAxr + XAs = ope— XSe
where in the last equation we have dropped the second order term AXASe to get a linear
system.

What we need is to solve this (2n 4+ m) x (2n + m) structured linear system. We proceed
as follows:

1. Express As in terms of Ay: As = —ATAy.

2. Express Az in terms of As, and hence Ay:

Ax = opus' —ax— XS 'As
= ops ' —z+ XSTTAT Ay,

where 5! is the vector composed of 1/s;, i =1,...,n.

3. Substitute this into the second set of equations to get: (AXS™'AT)Ay = b — opAs™,
where we have used Ar = b. AXS AT is a symmetric m x m positive definite matrix
that is possibly sparse. Note also that this is primal-dual path following since we have
XS~ in the matrix.



Solve the (Schur complement) equation for Ay, then As and Axz. Then, set (zy,y.,84) =
(x,y,s) + a(Azx, Ay, As) for some o > 0 and continue. Note: the system in 3. is very much
like that used to compute the affine-scaling direction d: (AX2AT)y = AX?c, then d = —X?c —
XATy.

We need a strategy for choosing o and « at each iteration. These are often based on staying
in some neighborhood of the central path:

||ﬁXSe —e||2 < B, the Ly-neighborhood;
||ﬁXSe —¢||eo < B, the Ly-neighborhood;

iXSe —e>—(1—7v)e< XSe > vyue, the L_,-neighborhood;

forsome 0 < f<lor0<~vy<l1.
Common strategies for doing this are:

Let 0 =1 — % for some fixed 0 < # < 1 and let @ = 1. Then, if HiXSe —ells < 6,
||iX+S+e —e|lo < . Thus, we stay in a small Ly-neighborhood of the central path.
This gives an “O(y/nlnl)” iteration algorithm.

Choose 0 < ¢ < 1 independent of n and let a be the largest value in [0, 1] such that
X(a)S(a) > yu(a)e for all 0 < o < @. It can be shown that @ = Q(+) and we get an
“O(nln %)” iteration algorithm. But, in practice this technique usually works better than
the previous one.

Suppose ||%XS6—€||2 < 1,0 =0. Choose the largest & such that ||ﬁX(a}S(a)e—e||2 <
% for 0 < a < @, and let the result be (z,7,5). Now take a second step from this point
using 0 = 1 and o = 1 to get (z4,ys,sy) with ||iX+S+e — el < 4. This gives an
“O(y/nln %)” iteration algorithm, but it also has quadratic convergence.

Initialization

. Use artificial variables and constraints: the primal problem (P)

min 'z + Mz, 1
Az + (b — Ae)zpiq
(e—o)Tx+ a0 = M,

T= (ZL‘; Tn+1,; $n+2)
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and the dual problem (D)
max  b'y + Moy
ATy +(e—C)ymy1 +5 = ¢

(b—Ae)'y +s,1 = M
Ym+1 + Spn+2 = 0
§= (3; Sn41; Sn+2) > 0
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and (D) have strict y feasible solutions if My, M, are large enough:
P) and (D) h ly feasible sol f My, M. 1 h
= (e;1; My — (e —c)'e) >0,

s = (e;My;1) > 0.
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2. Infeasible-interior-point methods: The “infeasible” means that Az # b and ATy + s # ¢
are possible and the “interior” means that z,s > 0. We can start with, say, x = s = ¢
and y = 0. Then, when we seek (Ax, Ay, As), just compensate for the infeasible z, (y, s):

ATAy+As = c— ATy —s
AAx = b— Ax
SAr 4+ XAs = ope— XSe.

Proceed as before. This works well in practice, but the theory is much more complicated.

3 Extensions of Interior-Point Methods (IPM’s)

IPM’s have been extended to many non-linear, but convex, programming problems, e.g. SDP
(semi-definite programming).

min C-X
X =0 (symmetric, positive semi-definite)

where U -V = tr(U"V) = 32, 32, u;jv;5. The dual is

max by

S=0

This problem has a logarithmic barrier function — In(det(X)) defined on symmetric, positive
definite matrices. The central path is defined by dual-primal feasibility and XS = ul, but this
last equation is not easy to linearize satisfactorily.

4 Summary and Overview

e Linear Programs (LP): An important class of optimization problems arising in a wide
variety of resource allocation, production planning, and data-fitting applications.

e Powerful Duality Theory: Short certificate of optimality, sensitivity analysis, certificate
of near optimality.



e Geometry: Polyhedral (extreme points, extreme directions), nice barrier function.
e Algorithms:
— Simplex Method: practically efficient, theoretically bad, gives optimal basis, useful

for sensitivity analysis and for re-optimization.

— Ellipsoid Method: practically inefficient, theoretically good, nice implications in
combinatorial optimization.

— Interior-Point Methods: practically efficient and theoretically good, give approxi-
mate dual solution but not a basis, not good for re-optimization.

o Future Courses:

— OR631: integer programming (Trotter), complexity of convex programming (Todd)
— OR632: non-linear programming (Lewis or Todd)

— OR634: combinatorial optimization (Bland)

— OR635: interior-point methods (Renegar or Todd)

— OR639: convex analysis (Lewis)

— (CS621: matrix computations

— (CS622: non-linear equations and optimization.



