1 Path-Following Methods

Recall that, as long as $\mathcal{F}^0(P)$ and $\mathcal{F}^0(D)$ are non-empty, for each $\mu > 0$ there is a (unique) solution $(x(\mu), y(\mu), s(\mu))$ to

$$A^{T}y + s = c$$

$$Ax = b$$

$$XSe = \mu e$$
(1)

for x > 0 and s > 0, defining the central path. Suppose we have an approximate solution (x, y, s) to this system with $x \in \mathcal{F}^0(P)$, $y \in \mathcal{F}^0(D)$ and $\frac{1}{\mu}XSe \approx e$, where $\mu = \frac{x^Ts}{n}$. We want to find $(x + \Delta x, y + \Delta y, s + \Delta s)$ to approximately satisfy (1) with μ replaced by $\sigma\mu$, $0 \le \sigma \le 1$. $(\sigma = 0$ means we are trying to find the optimal solution, $\sigma = 1$ means we are trying to get a better approximation to $(x(\mu), y(\mu), s(\mu))$, so usually $0 < \sigma < 1$). Then, $(\Delta x, \Delta y, \Delta s)$ satisfy

$$A^{T}\Delta y + \Delta s = 0$$

$$A\Delta x = 0$$

$$S\Delta x + X\Delta s = \sigma \mu e - XSe$$

where in the last equation we have dropped the second order term $\Delta X \Delta Se$ to get a linear system.

What we need is to solve this $(2n + m) \times (2n + m)$ structured linear system. We proceed as follows:

- 1. Express Δs in terms of Δy : $\Delta s = -A^T \Delta y$.
- 2. Express Δx in terms of Δs , and hence Δy :

$$\Delta x = \sigma \mu s^{-1} - x - X S^{-1} \Delta s$$
$$= \sigma \mu s^{-1} - x + X S^{-1} A^T \Delta y,$$

where s^{-1} is the vector composed of $1/s_i$, i = 1, ..., n.

3. Substitute this into the second set of equations to get: $(AXS^{-1}A^T)\Delta y = b - \sigma\mu As^{-1}$, where we have used Ax = b. $AXS^{-1}A^T$ is a symmetric $m \times m$ positive definite matrix that is possibly sparse. Note also that this is primal-dual path following since we have XS^{-1} in the matrix. Solve the (Schur complement) equation for Δy , then Δs and Δx . Then, set $(x_+, y_+, s_+) = (x, y, s) + \alpha(\Delta x, \Delta y, \Delta s)$ for some $\alpha > 0$ and continue. Note: the system in 3. is very much like that used to compute the affine-scaling direction \bar{d} : $(AX^2A^T)y = AX^2c$, then $\bar{d} = -X^2c - XA^Ty$.

We need a strategy for choosing σ and α at each iteration. These are often based on staying in some neighborhood of the central path:

- $||\frac{1}{\mu}XSe e||_2 \leq \beta$, the L₂-neighborhood;
- $||\frac{1}{\mu}XSe e||_{\infty} \leq \beta$, the L_{∞} -neighborhood;
- $\frac{1}{\mu}XSe e \ge -(1 \gamma)e \Leftrightarrow XSe \ge \gamma \mu e$, the $L_{-\infty}$ -neighborhood;

for some $0 < \beta < 1$ or $0 < \gamma < 1$.

Common strategies for doing this are:

- Let $\sigma = 1 \frac{\theta}{\sqrt{n}}$ for some fixed $0 < \theta < 1$ and let $\alpha = 1$. Then, if $||\frac{1}{\mu}XSe e||_2 \leq \beta$, $||\frac{1}{\mu_+}X_+S_+e e||_2 \leq \beta$. Thus, we stay in a small L_2 -neighborhood of the central path. This gives an " $O(\sqrt{n} \ln \frac{1}{\epsilon})$ " iteration algorithm.
- Choose $0 < \sigma < 1$ independent of n and let α be the largest value in [0, 1] such that $X(\alpha)S(\alpha) \ge \gamma \mu(\alpha)e$ for all $0 \le \alpha \le \overline{\alpha}$. It can be shown that $\overline{\alpha} = \Omega(\frac{1}{n})$ and we get an " $O(n \ln \frac{1}{\epsilon})$ " iteration algorithm. But, in practice this technique usually works better than the previous one.
- Suppose $||\frac{1}{\mu}XSe-e||_2 \leq \frac{1}{4}$, $\sigma = 0$. Choose the largest $\bar{\alpha}$ such that $||\frac{1}{\mu(\alpha)}X(\alpha)S(\alpha)e-e||_2 \leq \frac{1}{2}$ for $0 \leq \alpha \leq \bar{\alpha}$, and let the result be $(\hat{x}, \hat{y}, \hat{s})$. Now take a second step from this point using $\sigma = 1$ and $\alpha = 1$ to get (x_+, y_+, s_+) with $||\frac{1}{\mu_+}X_+S_+e e||_2 \leq \frac{1}{4}$. This gives an " $O(\sqrt{n} \ln \frac{1}{\epsilon})$ " iteration algorithm, but it also has quadratic convergence.

2 Initialization

1. Use artificial variables and constraints: the primal problem (\hat{P})

$$\min \quad c^T x + M_1 x_{n+1} \\ Ax + (b - Ae) x_{n+1} = b \\ (e - c)^T x + x_{n+2} = M_2 \\ \hat{x} = (x; x_{n+1}; x_{n+2}) \geq 0$$

and the dual problem (\hat{D})

$$\max \quad b^{T}y + M_{2}y_{m+1}$$

$$A^{T}y + (e-c)y_{m+1} + s = c$$

$$(b-Ae)^{T}y + s_{n+1} = M_{1}$$

$$y_{m+1} + s_{n+2} = 0$$

$$\hat{s} = (s; s_{n+1}; s_{n+2}) \geq 0.$$

 (\hat{P}) and (\hat{D}) have strictly feasible solutions if M_1, M_2 are large enough:

$$\hat{x} = (e; 1; M_2 - (e - c)^T e) > 0,
\hat{y} = (0; -1),
\hat{s} = (e; M_1; 1) > 0.$$

2. Infeasible-interior-point methods: The "infeasible" means that $Ax \neq b$ and $A^Ty + s \neq c$ are possible and the "interior" means that x, s > 0. We can start with, say, x = s = e and y = 0. Then, when we seek $(\Delta x, \Delta y, \Delta s)$, just compensate for the infeasible x, (y, s):

$$A^{T}\Delta y + \Delta s = c - A^{T}y - s$$
$$A\Delta x = b - Ax$$
$$S\Delta x + X\Delta s = \sigma \mu e - XSe.$$

Proceed as before. This works well in practice, but the theory is much more complicated.

3 Extensions of Interior-Point Methods (IPM's)

IPM's have been extended to many non-linear, but convex, programming problems, e.g. SDP (semi-definite programming).

min
$$C \cdot X$$

 $A_i \cdot X = b_i$ $i = 1, ..., m$
 $X \succeq 0$ (symmetric, positive semi-definite)

where $U \cdot V = \operatorname{tr}(U^T V) = \sum_i \sum_j u_{ij} v_{ij}$. The dual is

$$\max_{i} b^{T} y$$

$$\sum_{i} y_{i} A_{i} + S = C$$

$$S \succeq 0$$

This problem has a logarithmic barrier function $-\ln(\det(X))$ defined on symmetric, positive definite matrices. The central path is defined by dual-primal feasibility and $XS = \mu I$, but this last equation is not easy to linearize satisfactorily.

4 Summary and Overview

- Linear Programs (LP): An important class of optimization problems arising in a wide variety of resource allocation, production planning, and data-fitting applications.
- Powerful Duality Theory: Short certificate of optimality, sensitivity analysis, certificate of near optimality.

- Geometry: Polyhedral (extreme points, extreme directions), nice barrier function.
- Algorithms:
 - Simplex Method: practically efficient, theoretically bad, gives optimal basis, useful for sensitivity analysis and for re-optimization.
 - Ellipsoid Method: practically inefficient, theoretically good, nice implications in combinatorial optimization.
 - Interior-Point Methods: practically efficient and theoretically good, give approximate dual solution but not a basis, not good for re-optimization.
- Future Courses:
 - OR631: integer programming (Trotter), complexity of convex programming (Todd)
 - OR632: non-linear programming (Lewis or Todd)
 - OR634: combinatorial optimization (Bland)
 - OR635: interior-point methods (Renegar or Todd)
 - OR639: convex analysis (Lewis)
 - CS621: matrix computations
 - CS622: non-linear equations and optimization.