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1 Path-Following Methods

Recall that, as long as F 0(P ) and F0(D) are non-empty, for each µ > 0 there is a (unique)
solution (x(µ), y(µ), s(µ)) to

AT y + s = c

Ax = b (1)

XSe = µe

for x > 0 and s > 0, defining the central path. Suppose we have an approximate solution
(x, y, s) to this system with x ∈ F 0(P ), y ∈ F0(D) and 1

µ
XSe ≈ e, where µ = xT s

n
. We want

to find (x+∆x, y +∆y, s+∆s) to approximately satisfy (1) with µ replaced by σµ, 0 ≤ σ ≤ 1.
(σ = 0 means we are trying to find the optimal solution, σ = 1 means we are trying to get a
better approximation to (x(µ), y(µ), s(µ)), so usually 0 < σ < 1). Then, (∆x, ∆y, ∆s) satisfy

AT ∆y + ∆s = 0

A∆x = 0

S∆x + X∆s = σµe − XSe

where in the last equation we have dropped the second order term ∆X∆Se to get a linear
system.

What we need is to solve this (2n + m) × (2n + m) structured linear system. We proceed
as follows:

1. Express ∆s in terms of ∆y: ∆s = −AT ∆y.

2. Express ∆x in terms of ∆s, and hence ∆y:

∆x = σµs−1 − x − XS−1∆s

= σµs−1 − x + XS−1AT ∆y,

where s−1 is the vector composed of 1/si, i = 1, . . . , n.

3. Substitute this into the second set of equations to get: (AXS−1AT )∆y = b − σµAs−1,
where we have used Ax = b. AXS−1AT is a symmetric m × m positive definite matrix
that is possibly sparse. Note also that this is primal-dual path following since we have
XS−1 in the matrix.

1



Solve the (Schur complement) equation for ∆y, then ∆s and ∆x. Then, set (x+, y+, s+) =
(x, y, s) + α(∆x, ∆y, ∆s) for some α > 0 and continue. Note: the system in 3. is very much
like that used to compute the affine-scaling direction d̄: (AX2AT )y = AX2c, then d̄ = −X2c−
XAT y.

We need a strategy for choosing σ and α at each iteration. These are often based on staying
in some neighborhood of the central path:

• || 1
µ
XSe − e||2 ≤ β, the L2-neighborhood;

• || 1
µ
XSe − e||∞ ≤ β, the L∞-neighborhood;

• 1
µ
XSe − e ≥ −(1 − γ)e ⇔ XSe ≥ γµe, the L−∞-neighborhood;

for some 0 < β < 1 or 0 < γ < 1.
Common strategies for doing this are:

• Let σ = 1 − θ√
n

for some fixed 0 < θ < 1 and let α = 1. Then, if || 1
µ
XSe − e||2 ≤ β,

|| 1
µ+

X+S+e − e||2 ≤ β. Thus, we stay in a small L2-neighborhood of the central path.

This gives an “O(
√

n ln 1
ε
)” iteration algorithm.

• Choose 0 < σ < 1 independent of n and let α be the largest value in [0, 1] such that
X(α)S(α) ≥ γµ(α)e for all 0 ≤ α ≤ ᾱ. It can be shown that ᾱ = Ω( 1

n
) and we get an

“O(n ln 1
ε
)” iteration algorithm. But, in practice this technique usually works better than

the previous one.

• Suppose || 1
µ
XSe−e||2 ≤ 1

4
, σ = 0. Choose the largest ᾱ such that || 1

µ(α)
X(α)S(α)e−e||2 ≤

1
2

for 0 ≤ α ≤ ᾱ, and let the result be (x̂, ŷ, ŝ). Now take a second step from this point
using σ = 1 and α = 1 to get (x+, y+, s+) with || 1

µ+
X+S+e − e||2 ≤ 1

4
. This gives an

“O(
√

n ln 1
ε
)” iteration algorithm, but it also has quadratic convergence.

2 Initialization

1. Use artificial variables and constraints: the primal problem (P̂ )

min cT x + M1xn+1

Ax + (b − Ae)xn+1 = b

(e − c)T x + xn+2 = M2

x̂ = (x; xn+1; xn+2) ≥ 0

and the dual problem (D̂)

max bT y + M2ym+1

AT y + (e − c)ym+1 + s = c

(b − Ae)T y + sn+1 = M1

ym+1 + sn+2 = 0

ŝ = (s; sn+1; sn+2) ≥ 0.
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(P̂ ) and (D̂) have strictly feasible solutions if M1, M2 are large enough:

x̂ = (e; 1; M2 − (e − c)T e) > 0,

ŷ = (0;−1),

ŝ = (e; M1; 1) > 0.

2. Infeasible-interior-point methods: The “infeasible” means that Ax 6= b and AT y + s 6= c
are possible and the “interior” means that x, s > 0. We can start with, say, x = s = e
and y = 0. Then, when we seek (∆x, ∆y, ∆s), just compensate for the infeasible x, (y, s):

AT ∆y + ∆s = c − AT y − s

A∆x = b − Ax

S∆x + X∆s = σµe − XSe.

Proceed as before. This works well in practice, but the theory is much more complicated.

3 Extensions of Interior-Point Methods (IPM’s)

IPM’s have been extended to many non-linear, but convex, programming problems, e.g. SDP
(semi-definite programming).

min C · X
Ai · X = bi i = 1, . . . , m

X � 0 (symmetric, positive semi-definite)

where U · V = tr(UT V ) =
∑

i

∑
j uijvij. The dual is

max bT y
∑

i

yiAi + S = C

S � 0

This problem has a logarithmic barrier function − ln(det(X)) defined on symmetric, positive
definite matrices. The central path is defined by dual-primal feasibility and XS = µI, but this
last equation is not easy to linearize satisfactorily.

4 Summary and Overview

• Linear Programs (LP): An important class of optimization problems arising in a wide
variety of resource allocation, production planning, and data-fitting applications.

• Powerful Duality Theory: Short certificate of optimality, sensitivity analysis, certificate
of near optimality.
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• Geometry: Polyhedral (extreme points, extreme directions), nice barrier function.

• Algorithms:

– Simplex Method: practically efficient, theoretically bad, gives optimal basis, useful
for sensitivity analysis and for re-optimization.

– Ellipsoid Method: practically inefficient, theoretically good, nice implications in
combinatorial optimization.

– Interior-Point Methods: practically efficient and theoretically good, give approxi-
mate dual solution but not a basis, not good for re-optimization.

• Future Courses:

– OR631: integer programming (Trotter), complexity of convex programming (Todd)

– OR632: non-linear programming (Lewis or Todd)

– OR634: combinatorial optimization (Bland)

– OR635: interior-point methods (Renegar or Todd)

– OR639: convex analysis (Lewis)

– CS621: matrix computations

– CS622: non-linear equations and optimization.
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