Mathematical Programming	Lecture 26
OR 630 Fall 2005	November 30, 2005
Notes by Serkan Kirac	

The \log barrier function is defined as $F(x):=-\ln (x):=-\sum \ln \left(x_{j}\right)$.
a) It is a (strictly) convex function on $\mathcal{F}^{\circ}(\mathcal{P})$ or on $R_{++}^{n}:=\left\{x \in R^{n}: x>0\right\}$;
b) $F(x) \rightarrow+\infty$ if $x \rightarrow \bar{x} \in R_{+}^{n} \backslash R_{++}^{n}$;
c) $F\left(\bar{X}^{-1} x\right)=\ln (\bar{x})+F(x)$.

We can use this to compare points in $\mathcal{F}^{\circ}(\mathcal{P})$:
i) $c^{T} x$ measures its objective function value;
ii) $F(x)$ measures its "centrality" in the feasible region.

This motivates the penalized function $\theta_{\mu}(x):=c^{T} x+\mu F(x)$ for $\mu>0$ defined on $\mathcal{F}^{\circ}(\mathcal{P})$. μ is small - the minimizer is near optimal;
μ is large - the minimizer is "central" in the feasible region.

Figure 1: Example for bounded and unbounded polyhedra.

Theorem 1 a) A necessary and sufficient condition for θ_{μ} to have a minimizer on $\mathcal{F}^{\circ}(\mathcal{P})$ is that $\mathcal{F}^{\circ}(\mathcal{P})$ and $\mathcal{F}^{\circ}(\mathcal{D})$ be nonempty.
b) If these conditions hold, a necessary and sufficient condition to $x \in \mathcal{F}^{\circ}(\mathcal{P})$ to be a minimizer
(in fact "the" minimizer) is that there is $(y, s) \in \mathcal{F}^{\circ}(\mathcal{D})$ such that

$$
\begin{array}{rlrl}
A^{T} y+s & =c, & & s>0 \tag{*}\\
& =b, & x>0 \\
X S e & =\mu e,
\end{array}
$$

where $X:=\operatorname{Diag}(x), S:=\operatorname{Diag}(s), e=(1,1,1 \ldots, 1)^{T} \in R^{n}$
(Note: the minimizer is unique because $F(x)=-\ln (x)$ is strictly convex)
Proof: (Sufficiency of (a)). Assume $\hat{x} \in \mathcal{F}^{\circ}(\mathcal{P}),(\hat{y}, \hat{s}) \in \mathcal{F}^{\circ}(\mathcal{D})$. Then $\theta_{\mu}(x)=c^{T} x+\mu F(x)=$ $\left(A^{T} \hat{y}+\hat{s}\right)^{T} x+\mu F(x)=b^{T} \hat{y}+\hat{s}^{T} x+\mu F(x)=b^{T} \hat{y}+\sum\left(\hat{s}_{j} x_{j}-\mu \ln \left(x_{j}\right)\right)$.

Figure 2: Graph of $\hat{s}_{j} x_{j}-\mu \ln \left(x_{j}\right)$
For every $x \in \mathcal{F}^{\circ}(\mathcal{P})$, if $\theta_{\mu}(x) \leq \theta_{\mu}(\hat{x})$ then $0<\underline{x}_{j} \leq x_{j} \leq \bar{x}_{j}<\infty$ for all j where \underline{x}_{j} is a lower bound and \bar{x}_{j} an upper bound.
We will apply Weierstrass's Theorem: A continuous function attains its minimum on a compact set.
Apply this to minimize θ_{μ} (it is continuous) over $\left\{x \in \mathcal{F}^{\circ}(\mathcal{P}): \underline{x} \leq x \leq \bar{x}\right\}$. So there exists a minimizer.
((b) and necessity of (a)). Suppose that x is a minimizer of θ_{μ} over $\mathcal{F}^{\circ}(\mathcal{P})$. Then $\nabla \theta_{\mu}(x)=$ $c+\mu \nabla F(x)$ must be in the range of A^{T}. If not, by the proposition of lecture of $11 / 29$, $-P_{A} \nabla \theta_{\mu}(x)$ is a direction where θ_{μ} decreases to first order so x is not a minimizer. I.e., $c+\mu \nabla F(x)=c+\mu\left(-X^{-1} e\right)=: c-\mu x^{-1}=A^{T} y$ for some $y\left(x^{-1}:=\left(\frac{1}{x_{1}} ; \frac{1}{x_{2}} ; \ldots.\right)\right)$. Now set $s=\mu x^{-1}>0$ and obtain (*). Part (a) is done, since $x \in \mathcal{F}^{\circ}(\mathcal{P})$ and $(y, s) \in \mathcal{F}^{\circ}(\mathcal{D})$.
Finally suppose conditions (*) hold. Then $x \in \mathcal{F}^{\circ}(\mathcal{P})$ and $\nabla \theta_{\mu}(x)=c-\mu x^{-1}=A^{T} y$. So, $\left(c-A^{T} y\right)^{T} x+\mu F(x)$ has zero gradient at x and (since $F(x)$ is a convex function) x is a global minimizer of $\left(c-A^{T} y\right)^{T} x+\mu F(x)$ over R_{++}^{n} and hence over $\mathcal{F}^{\circ}(\mathcal{P})$. But this function is $\theta_{\mu}(x)-b^{T} y$, so x is a minimizer of θ_{μ} over $\mathcal{F}^{\circ}(\mathcal{P})$.

Note: Conditions $\left(^{*}\right)$ are symmetric between (P) and (D). No surprise that $\left(^{*}\right)$ gives necessary and sufficient conditions for (y, s) to solve

$$
\begin{array}{r}
\max \quad b^{T} y-\mu F(s) \\
A^{T}+s=c \\
s>0
\end{array}
$$

Corollary 1: (assuming $\mathcal{F}^{\circ}(\mathcal{P}), \mathcal{F}^{\circ}(\mathcal{D})$ are nonempty) The solutions $(x(\mu), y(\mu), s(\mu))$ to $\left(^{*}\right)$ satisfy

$$
\begin{aligned}
x(\mu) & \in & \mathcal{F}^{\circ}(\mathcal{P}), \\
(y(\mu), s(\mu)) & \in & \mathcal{F}^{\circ}(\mathcal{D}), \\
c^{T} x(\mu)-b^{T} y(\mu) & = & x(\mu)^{T} s(\mu)=n \mu,
\end{aligned}
$$

for any $\mu>0$.
So, as $\mu \downarrow 0$,
$c^{T} x(\mu) \rightarrow v(P)$, optimal value of (P), and
$b^{T} x(\mu) \rightarrow v(D)$, optimal value of (D).
Corollary 2: If $\mathcal{F}^{\circ}(\mathcal{P}), \mathcal{F}^{\circ}(\mathcal{D})$ are nonempty, then at least one of them is unbounded $\left(x_{j}(\mu) s_{j}(\mu) \rightarrow\right.$ ∞ as $\mu \rightarrow \infty)$.
$\{x(\mu): \mu>0\}$ is called the primal central path;
$\{(y(\mu), s(\mu)): \mu>0\}$ is called the dual central path; and
$\{(x(\mu), y(\mu), s(\mu)): \mu>0\}$ is called the primal-dual central path.

Introduction to Interior Point Methods

(For more see Bertsimas-Tsitsiklis and S. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.)
a)Affine-Scaling Methods:Originally due to Dikin('67) and rediscovered several times after Karmarkar. Take a step along the affine-scaling direction of a certain length at each iteration. (Convergence proved for different variants, but not thought to be polynomial time.)
b)Potential-Reduction Methods:Based on reducing a potential function at every iteration.

Primal potential function:
$\phi_{q}(x: \zeta):=q \ln \left(c^{T} x-\zeta\right)+F(x)\left(\right.$ cf. $\left.\theta_{\mu}(x)=c^{T} x+\mu F(x)\right) q \geq n, \zeta \leq \zeta_{*}=v(D), x \in \mathcal{F}^{\circ}(\mathcal{P})$
(Karmarkar '84). We want to decrease $\phi_{q}(x: \zeta)$ by a constant at every iteration. If we can, we can get " $O\left(n \ln \frac{1}{\varepsilon}\right)$ " iterations to get ε-optimal solutions (the quotes indicate that there are other terms in the bound depending on initialization, etc.).

Primal-dual potential function:
$\phi_{q}(x, y, s):=q \ln \left(x^{T} s\right)+F(x)+F(s)$ for $q \geq n$, defined on $\mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$ (Tanabe '87, ToddYe '90).

Proposition 1: $\phi_{n}(x, y, s) \geq n \ln (n)$, with equality if and only if all $x_{j} s_{j}$'s are equal.
Proof: $\quad \phi_{n}(x, y, s)=n \ln (n)+n \ln \frac{x^{T} s}{n}-\sum \ln \left(x_{j} s_{j}\right)=n \ln (n)+n \ln (A)-n \ln \left(\prod x_{j} s_{j}\right)^{\frac{1}{n}}=$ $n \ln (n)+n \ln (A)-n \ln (G) \geq n \ln (n)$, where A is the arithmetic mean and G the geometric mean of the $x_{j} s_{j}$'s.

Proposition 2: $\phi_{q}(x, y, s)$ is unbounded below on $(x, y, s) \in \mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$ if $q>n$. Proof: Look at $(x(\mu), y(\mu), s(\mu))$ with $\phi_{q}(x, y, s)=(q-n) \ln (n \mu)+n \ln (n) \rightarrow-\infty$ as $\mu \downarrow 0$.

Theorem 2 If $(x, y, s) \in \mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$, then $c^{T} x-b^{T} y=x^{T} s \leq \exp \left(\frac{\phi_{q}(x, y, s)}{q-n}\right)$. (This leads to " $O\left((q-n) \ln \frac{1}{\varepsilon}\right)$ " steps to get $x^{T} s \leq \varepsilon$ if we can decrease ϕ_{q} by a constant every iteration. This can be achieved for $q \geq n+\sqrt{n}$, leading to " $O\left(\sqrt{n} \ln \frac{1}{\varepsilon}\right)$ " iteration algorithms (Ye '91, Freund '91, Kojima-Mizuno-Yoshise '92).)

Proof: $\phi_{q}(x, y, s):=q \ln \left(x^{T} s\right)+F(x)+F(s)=(q-n) \ln \left(x^{T} s\right)+\phi_{n}(x, y, s) \geq(q-n) \ln \left(x^{T} s\right)+$ $n \ln (n) \geq(q-n) \ln \left(x^{T} s\right)$.

