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.
The log barrier function is defined as F (x) := − ln(x) := −∑

ln(xj).

a) It is a (strictly) convex function on F◦(P) or on Rn
++ := {x ∈ Rn : x > 0};

b) F (x) → +∞ if x → x̄ ∈ Rn
+\Rn

++;

c) F (X̄−1x) = ln(x̄) + F (x).

We can use this to compare points in F◦(P):

i) cT x measures its objective function value;

ii) F (x) measures its “centrality” in the feasible region.

This motivates the penalized function θµ(x) := cT x + µF (x) for µ > 0 defined on F◦(P).
µ is small - the minimizer is near optimal;
µ is large - the minimizer is “central” in the feasible region.

Figure 1: Example for bounded and unbounded polyhedra.

Theorem 1 a) A necessary and sufficient condition for θµ to have a minimizer on F◦(P)
is that F◦(P) and F◦(D) be nonempty.
b) If these conditions hold, a necessary and sufficient condition to x ∈ F◦(P) to be a minimizer
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(in fact “the” minimizer) is that there is (y, s) ∈ F◦(D) such that

AT y + s = c, s > 0
Ax = b, x > 0 (∗)

XSe = µe,

where X := Diag(x), S := Diag(s), e = (1, 1, 1..., 1)T ∈ Rn

(Note: the minimizer is unique because F (x) = − ln(x) is strictly convex)
Proof: (Sufficiency of (a)). Assume x̂ ∈ F◦(P), (ŷ, ŝ) ∈ F◦(D). Then θµ(x) = cT x + µF (x) =
(AT ŷ + ŝ)T x + µF (x) = bT ŷ + ŝT x + µF (x) = bT ŷ +

∑
(ŝjxj − µ ln(xj)).

Figure 2: Graph of ŝjxj − µ ln(xj)

For every x ∈ F◦(P), if θµ(x) ≤ θµ(x̂) then 0 < xj ≤ xj ≤ x̄j < ∞ for all j where xj is a lower
bound and x̄j an upper bound.
We will apply Weierstrass’s Theorem: A continuous function attains its minimum on a compact
set.
Apply this to minimize θµ (it is continuous) over {x ∈ F◦(P) : x ≤ x ≤ x̄}. So there exists a
minimizer.

((b) and necessity of (a)). Suppose that x is a minimizer of θµ over F◦(P). Then ∇θµ(x) =
c + µ∇F (x) must be in the range of AT . If not, by the proposition of lecture of 11/29,
−PA∇θµ(x) is a direction where θµ decreases to first order so x is not a minimizer. I.e.,
c + µ∇F (x) = c + µ(−X−1e) =: c − µx−1 = AT y for some y (x−1 := ( 1

x1
; 1

x2
; ....)). Now set

s = µx−1 > 0 and obtain (*). Part (a) is done, since x ∈ F◦(P) and (y, s) ∈ F◦(D).
Finally suppose conditions (*) hold. Then x ∈ F◦(P) and ∇θµ(x) = c − µx−1 = AT y. So,
(c − AT y)T x + µF (x) has zero gradient at x and (since F (x) is a convex function) x is a
global minimizer of (c − AT y)T x + µF (x) over Rn

++ and hence over F◦(P). But this function
is θµ(x)− bT y, so x is a minimizer of θµ over F◦(P). ut
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Note: Conditions (*) are symmetric between (P) and (D). No surprise that (*) gives necessary
and sufficient conditions for (y, s) to solve

max bT y − µF (s)
AT + s = c

s > 0.

Corollary 1: (assuming F◦(P),F◦(D) are nonempty) The solutions (x(µ), y(µ), s(µ)) to (*)
satisfy

x(µ) ∈ F◦(P),
(y(µ), s(µ)) ∈ F◦(D),

cT x(µ)− bT y(µ) = x(µ)T s(µ) = nµ,

for any µ > 0.

So, as µ ↓ 0,
cT x(µ) → v(P ), optimal value of (P), and
bT x(µ) → v(D), optimal value of (D).

Corollary 2: If F◦(P),F◦(D) are nonempty, then at least one of them is unbounded (xj(µ)sj(µ) →
∞ as µ →∞).
{x(µ) : µ > 0} is called the primal central path;
{(y(µ), s(µ)) : µ > 0} is called the dual central path; and
{(x(µ), y(µ), s(µ)) : µ > 0} is called the primal-dual central path.

Introduction to Interior Point Methods

(For more see Bertsimas-Tsitsiklis and S. Wright, Primal-Dual Interior-Point Methods, SIAM,
1997.)

a)Affine-Scaling Methods:Originally due to Dikin(’67) and rediscovered several times after Kar-
markar. Take a step along the affine-scaling direction of a certain length at each iteration.
(Convergence proved for different variants, but not thought to be polynomial time.)

b)Potential-Reduction Methods:Based on reducing a potential function at every iteration.

Primal potential function:
φq(x : ζ) := q ln(cT x− ζ) + F (x) (cf. θµ(x) = cT x + µF (x)) q ≥ n, ζ ≤ ζ∗ = v(D), x ∈ F◦(P)
(Karmarkar ’84). We want to decrease φq(x : ζ) by a constant at every iteration. If we can,
we can get “O(n ln 1

ε
)” iterations to get ε-optimal solutions (the quotes indicate that there are

other terms in the bound depending on initialization, etc.).

Primal-dual potential function:
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φq(x, y, s) := q ln(xT s)+F (x)+F (s) for q ≥ n, defined on F◦(P)×F◦(D) (Tanabe ’87, Todd-
Ye ’90).

Proposition 1: φn(x, y, s) ≥ n ln(n), with equality if and only if all xjsj’s are equal.

Proof: φn(x, y, s) = n ln(n) + n ln xT s
n
− ∑

ln(xjsj) = n ln(n) + n ln(A) − n ln(
∏

xjsj)
1
n =

n ln(n) + n ln(A) − n ln(G) ≥ n ln(n), where A is the arithmetic mean and G the geometric
mean of the xjsj’s. ut

Proposition 2: φq(x, y, s) is unbounded below on (x, y, s) ∈ F◦(P)×F◦(D) if q > n.
Proof: Look at (x(µ), y(µ), s(µ)) with φq(x, y, s) = (q − n) ln(nµ) + n ln(n) → −∞ as µ ↓ 0.
ut

Theorem 2 If (x, y, s) ∈ F◦(P)× F◦(D), then cT x − bT y = xT s ≤ exp(φq(x,y,s)
q−n

). (This leads

to “O((q − n) ln 1
ε
)” steps to get xT s ≤ ε if we can decrease φq by a constant every iteration.

This can be achieved for q ≥ n +
√

n, leading to “O(
√

n ln 1
ε
)” iteration algorithms (Ye ’91,

Freund ’91, Kojima-Mizuno-Yoshise ’92).)

Proof: φq(x, y, s) := q ln(xT s)+F (x)+F (s) = (q−n) ln(xT s)+φn(x, y, s) ≥ (q−n) ln(xT s)+
n ln(n) ≥ (q − n) ln(xT s). ut
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