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Notes by Serkan Kirac

The log barrier function is defined as F'(z) := —In(x) := — Y In(x;).

a) It is a (strictly) convex function on F°(P) or on R}, = {z € R" : x > 0};

b) F(z) — +ooif v — 7 € RT\RY;

¢) F(X~1z) = In(z) + F(z).

We can use this to compare points in F°(P):

i) ¢’r measures its objective function value;

ii) F'(z) measures its “centrality” in the feasible region.

This motivates the penalized function 0,(z) := ¢’z + uF(z) for > 0 defined on F°(P).

4 is small - the minimizer is near optimal,
1 is large - the minimizer is “central” in the feasible region.
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Figure 1: Example for bounded and unbounded polyhedra.

Theorem 1 a) A necessary and sufficient condition for 6, to have a minimizer on F°(P)
is that F°(P) and F°(D) be nonempty.
b) If these conditions hold, a necessary and sufficient condition to x € F°(P) to be a minimizer



(in fact “the” minimizer) is that there is (y,s) € F°(D) such that

Aly+s =¢, 5>0
Ax =b x>0 (%)
XSe = pue,

where X := Diag(x), S := Diag(s), e = (1,1, 1.. e R

n(z) is strictly convex)
) € F°(D). Then 0,(z) = "'z + pF(z) =
(825 — pin(z;)).

(Note: the minimizer is unique because F'(x) =
Proof: (Sufficiency of (a)). Assume z € F°(P

T
; 5
(ATg+ 8)Te + puF(x) =b"g + sz + pF(x) = b7
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Figure 2: Graph of §;x; — pln(x;)

For every xz € F°(P), if 0,(x) < 6,(Z) then 0 < z; < x; < ¥; < oo for all j where z; is a lower
bound and z; an upper bound.

We will apply Weierstrass’s Theorem: A continuous function attains its minimum on a compact
set.

Apply this to minimize 6,, (it is continuous) over {z € F°(P) : & < = < z}. So there exists a
minimizer.

((b) and necessity of (a)). Suppose that x is a minimizer of §, over F°(P). Then V0,(x) =
¢ + uVF(x) must be in the range of AT. If not, by the proposition of lecture of 11/29,
—PsV0,(x) is a direction where 6, decreases to first order so z is not a minimizer. I.e.,
c+ uVF(x) = c+ pu(—=X"te) = ¢ — puz~! = ATy for some y (z7! := (z—ll, 11—2; ....)). Now set
s = px~! > 0 and obtain (*). Part (a) is done, since x € F°(P) and (y, s) € F°(D).

Finally suppose conditions (*) hold. Then x € F°(P) and V0,(z) = ¢ — pz~* = ATy. So,
(c — ATy)'z + pF(z) has zero gradient at z and (since F(x) is a convex function) z is a
global minimizer of (¢ — ATy) 2 + pF(z) over R, and hence over F°(P). But this function

is 0,(x) — bTy, so x is a minimizer of 0, over F°(P). O



Note: Conditions (*) are symmetric between (P) and (D). No surprise that (*) gives necessary
and sufficient conditions for (y, s) to solve

max bTy — puF(s)
Al +s=c¢
s> 0.

Corollary 1: (assuming F°(P),F°(D) are nonempty) The solutions (z(u),y(u), s(1)) to (*)
satisfy

x(p) € F(P),
(y(w), s(w) €  F(D),
cla(p) = bTy(p) = =(w)'s(n) = np,
for any > 0.
So, as i | 0,

c'z(1) — v(P), optimal value of (P), and

bTx(1) — v(D), optimal value of (D).

Corollary 2: If 7°(P), F°(D) are nonempty, then at least one of them is unbounded (z;()s; (1) —
00 as ft — 00).

{z(p) : u > 0} is called the primal central path;

{(y(p),s(u)) : u > 0} is called the dual central path; and

{(x(u),y(p),s(u)) : o> 0} is called the primal-dual central path.

Introduction to Interior Point Methods

(For more see Bertsimas-Tsitsiklis and S. Wright, Primal-Dual Interior-Point Methods, STAM,
1997.)

a)Affine-Scaling Methods:Originally due to Dikin(’67) and rediscovered several times after Kar-
markar. Take a step along the affine-scaling direction of a certain length at each iteration.
(Convergence proved for different variants, but not thought to be polynomial time.)

b)Potential-Reduction Methods:Based on reducing a potential function at every iteration.

Primal potential function:

Gg(z: ¢) = qIn(c"x — () + F(x) (cf. §,(x) =Tz + pF(x)) ¢ >n, ( <G =v(D), x € F°(P)
(Karmarkar ’84). We want to decrease ¢,(z : () by a constant at every iteration. If we can,
we can get “O(nln é)” iterations to get e-optimal solutions (the quotes indicate that there are
other terms in the bound depending on initialization, etc.).

Primal-dual potential function:



bq(z,y, 8) == qln(zTs) + F(x) + F(s) for ¢ > n, defined on F°(P) x F°(D) (Tanabe '87, Todd-
Ye '90).

Proposition 1: ¢,(x,y,s) > nln(n), with equality if and only if all z;s;’s are equal.

Proof: ¢,(x,y,s) = nln(n) + nln%s — Y In(z;s;) = nln(n) + nln(A) — nIn(I] xjsj)% =
nin(n) + nln(A) — nln(G) > nln(n), where A is the arithmetic mean and G the geometric
mean of the z;s;’s. O

Proposition 2: ¢,(z,y, s) is unbounded below on (z,y,s) € F°(P) x F°(D) if ¢ > n.
Proof: Look at (x(u),y(p), s(p)) with ¢,(z,y,s) = (¢ — n)In(np) + nln(n) — —oo as p | 0.
O

Theorem 2 If (z,y,s) € F°(P) x F°(D), then c'x — b7y = 27s < exp(%). (This leads
to “O((q — n) ln%)” steps to get x7s < e if we can decrease ¢, by a constant every iteration.
This can be achieved for ¢ > n + \/n, leading to “O(y/nInl)” iteration algorithms (Ye 91,
Freund "91, Kojima-Mizuno-Yoshise '92).)

Proof: ¢,(z,y,s) := qln(z?s) + F(z)+ F(s) = (¢g—n) In(z”s) + ¢, (z,y,s) > (¢—n)In(z"s) +
nln(n) > (¢ —n)In(z's). O



