.

The log barrier function is defined as $F(x) := -\ln(x) := -\sum \ln(x_j)$.

- a) It is a (strictly) convex function on $\mathcal{F}^{\circ}(\mathcal{P})$ or on $\mathbb{R}^n_{++}:=\{x\in\mathbb{R}^n:x>0\};$
- b) $F(x) \to +\infty$ if $x \to \bar{x} \in R^n_+ \backslash R^n_{++}$;
- c) $F(\bar{X}^{-1}x) = \ln(\bar{x}) + F(x)$.

We can use this to compare points in $\mathcal{F}^{\circ}(\mathcal{P})$:

- i) $c^T x$ measures its objective function value;
- ii) F(x) measures its "centrality" in the feasible region.

This motivates the penalized function $\theta_{\mu}(x) := c^T x + \mu F(x)$ for $\mu > 0$ defined on $\mathcal{F}^{\circ}(\mathcal{P})$. μ is small - the minimizer is near optimal; μ is large - the minimizer is "central" in the feasible region.

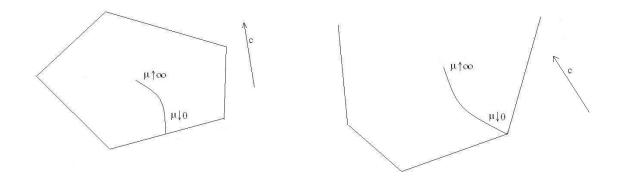


Figure 1: Example for bounded and unbounded polyhedra.

Theorem 1 a) A necessary and sufficient condition for θ_{μ} to have a minimizer on $\mathcal{F}^{\circ}(\mathcal{P})$ is that $\mathcal{F}^{\circ}(\mathcal{P})$ and $\mathcal{F}^{\circ}(\mathcal{D})$ be nonempty.

b) If these conditions hold, a necessary and sufficient condition to $x \in \mathcal{F}^{\circ}(\mathcal{P})$ to be a minimizer

(in fact "the" minimizer) is that there is $(y,s) \in \mathcal{F}^{\circ}(\mathcal{D})$ such that

$$A^{T}y + s = c, \quad s > 0$$

$$Ax \quad = b, \quad x > 0 \quad (*)$$

$$XSe = \mu e,$$

where $X := Diag(x), S := Diag(s), e = (1, 1, 1..., 1)^T \in \mathbb{R}^n$

(Note: the minimizer is unique because $F(x) = -\ln(x)$ is strictly convex)

Proof: (Sufficiency of (a)). Assume $\hat{x} \in \mathcal{F}^{\circ}(\mathcal{P})$, $(\hat{y}, \hat{s}) \in \mathcal{F}^{\circ}(\mathcal{D})$. Then $\theta_{\mu}(x) = c^T x + \mu F(x) = (A^T \hat{y} + \hat{s})^T x + \mu F(x) = b^T \hat{y} + \hat{s}^T x + \mu F(x) = b^T \hat{y} + \sum (\hat{s}_i x_i - \mu \ln(x_i))$.

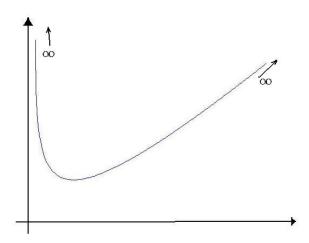


Figure 2: Graph of $\hat{s}_j x_j - \mu \ln(x_j)$

For every $x \in \mathcal{F}^{\circ}(\mathcal{P})$, if $\theta_{\mu}(x) \leq \theta_{\mu}(\hat{x})$ then $0 < \underline{x}_{j} \leq x_{j} \leq \bar{x}_{j} < \infty$ for all j where \underline{x}_{j} is a lower bound and \bar{x}_{j} an upper bound.

We will apply Weierstrass's Theorem: A continuous function attains its minimum on a compact set.

Apply this to minimize θ_{μ} (it is continuous) over $\{x \in \mathcal{F}^{\circ}(\mathcal{P}) : \underline{x} \leq x \leq \bar{x}\}$. So there exists a minimizer.

((b) and necessity of (a)). Suppose that x is a minimizer of θ_{μ} over $\mathcal{F}^{\circ}(\mathcal{P})$. Then $\nabla \theta_{\mu}(x) = c + \mu \nabla F(x)$ must be in the range of A^{T} . If not, by the proposition of lecture of 11/29, $-P_{A}\nabla \theta_{\mu}(x)$ is a direction where θ_{μ} decreases to first order so x is not a minimizer. I.e., $c + \mu \nabla F(x) = c + \mu(-X^{-1}e) =: c - \mu x^{-1} = A^{T}y$ for some y ($x^{-1} := (\frac{1}{x_{1}}; \frac{1}{x_{2}};)$). Now set $s = \mu x^{-1} > 0$ and obtain (*). Part (a) is done, since $x \in \mathcal{F}^{\circ}(\mathcal{P})$ and $(y, s) \in \mathcal{F}^{\circ}(\mathcal{D})$. Finally suppose conditions (*) hold. Then $x \in \mathcal{F}^{\circ}(\mathcal{P})$ and $\nabla \theta_{\mu}(x) = c - \mu x^{-1} = A^{T}y$. So, $(c - A^{T}y)^{T}x + \mu F(x)$ has zero gradient at x and (since F(x) is a convex function) x is a global minimizer of $(c - A^{T}y)^{T}x + \mu F(x)$ over R_{++}^{n} and hence over $\mathcal{F}^{\circ}(\mathcal{P})$. But this function is $\theta_{\mu}(x) - b^{T}y$, so x is a minimizer of θ_{μ} over $\mathcal{F}^{\circ}(\mathcal{P})$. \square

Note: Conditions (*) are symmetric between (P) and (D). No surprise that (*) gives necessary and sufficient conditions for (y, s) to solve

$$\max \quad b^T y - \mu F(s)$$
$$A^T + s = c$$
$$s > 0.$$

Corollary 1: (assuming $\mathcal{F}^{\circ}(\mathcal{P}), \mathcal{F}^{\circ}(\mathcal{D})$ are nonempty) The solutions $(x(\mu), y(\mu), s(\mu))$ to (*) satisfy

$$\begin{array}{cccc} x(\mu) & \in & \mathcal{F}^{\circ}(\mathcal{P}), \\ (y(\mu), s(\mu)) & \in & \mathcal{F}^{\circ}(\mathcal{D}), \\ c^T x(\mu) - b^T y(\mu) & = & x(\mu)^T s(\mu) & = & n\mu, \end{array}$$

for any $\mu > 0$.

So, as $\mu \downarrow 0$, $c^T x(\mu) \to v(P)$, optimal value of (P), and $b^T x(\mu) \to v(D)$, optimal value of (D).

Corollary 2: If $\mathcal{F}^{\circ}(\mathcal{P})$, $\mathcal{F}^{\circ}(\mathcal{D})$ are nonempty, then at least one of them is unbounded $(x_j(\mu)s_j(\mu) \to \infty \text{ as } \mu \to \infty)$.

 $\{x(\mu): \mu > 0\}$ is called the primal central path;

 $\{(y(\mu), s(\mu)) : \mu > 0\}$ is called the dual central path; and

 $\{(x(\mu), y(\mu), s(\mu)) : \mu > 0\}$ is called the <u>primal-dual central path</u>.

Introduction to Interior Point Methods

(For more see Bertsimas-Tsitsiklis and S. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.)

- a) Affine-Scaling Methods: Originally due to Dikin('67) and rediscovered several times after Karmarkar. Take a step along the affine-scaling direction of a certain length at each iteration. (Convergence proved for different variants, but not thought to be polynomial time.)
- b) Potential-Reduction Methods: Based on reducing a potential function at every iteration.

Primal potential function:

 $\phi_q(x:\zeta) := q \ln(c^T x - \zeta) + F(x)$ (cf. $\theta_\mu(x) = c^T x + \mu F(x)$) $q \ge n$, $\zeta \le \zeta_* = v(D)$, $x \in \mathcal{F}^{\circ}(\mathcal{P})$ (Karmarkar '84). We want to decrease $\phi_q(x:\zeta)$ by a constant at every iteration. If we can, we can get " $O(n \ln \frac{1}{\varepsilon})$ " iterations to get ε -optimal solutions (the quotes indicate that there are other terms in the bound depending on initialization, etc.).

Primal-dual potential function:

 $\phi_q(x, y, s) := q \ln(x^T s) + F(x) + F(s)$ for $q \ge n$, defined on $\mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$ (Tanabe '87, Todd-Ye '90).

Proposition 1: $\phi_n(x,y,s) \geq n \ln(n)$, with equality if and only if all $x_j s_j$'s are equal. **Proof:** $\phi_n(x,y,s) = n \ln(n) + n \ln \frac{x^T s}{n} - \sum \ln(x_j s_j) = n \ln(n) + n \ln(A) - n \ln(\prod x_j s_j)^{\frac{1}{n}} = n \ln(n) + n \ln(A) - n \ln(G) \geq n \ln(n)$, where A is the arithmetic mean and G the geometric mean of the $x_j s_j$'s. \square

Proposition 2: $\phi_q(x, y, s)$ is unbounded below on $(x, y, s) \in \mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$ if q > n. **Proof:** Look at $(x(\mu), y(\mu), s(\mu))$ with $\phi_q(x, y, s) = (q - n) \ln(n\mu) + n \ln(n) \to -\infty$ as $\mu \downarrow 0$.

Theorem 2 If $(x, y, s) \in \mathcal{F}^{\circ}(\mathcal{P}) \times \mathcal{F}^{\circ}(\mathcal{D})$, then $c^T x - b^T y = x^T s \leq \exp(\frac{\phi_q(x, y, s)}{q - n})$. (This leads to " $O((q - n) \ln \frac{1}{\varepsilon})$ " steps to get $x^T s \leq \varepsilon$ if we can decrease ϕ_q by a constant every iteration. This can be achieved for $q \geq n + \sqrt{n}$, leading to " $O(\sqrt{n} \ln \frac{1}{\varepsilon})$ " iteration algorithms (Ye '91, Freund '91, Kojima-Mizuno-Yoshise '92).)

Proof: $\phi_q(x, y, s) := q \ln(x^T s) + F(x) + F(s) = (q - n) \ln(x^T s) + \phi_n(x, y, s) \ge (q - n) \ln(x^T s) + n \ln(n) \ge (q - n) \ln(x^T s)$. \square