
Mathematical Programming Lecture 25

OR 630 Fall 2005 November 29, 2005

Notes by Arijit Chakrabarty

Interior-point methods

The ellipsoid method is not practically efficient for large scale problems, though very important
theoretically, especially in combinatorial optimisation. It can be viewed as an existence proof
for an efficient algorithm. It inspired the search for a practically efficient and theoretically
polynomial time algorithm.

Interior-point methods (IPMs) were initially devised by Karmakar (1984) (although they
are closely related to barrier methods used for linear and nonlinear programming since the
1950s). Since then, great development has led to more sophisticated IPMs that are competitive
with (and are sometimes faster than) the simplex method. We will see just an introduction to
IPMs.

In theory, due to the work of Nesterov and Nemirovski, these can be applied to any con-
vex programming problem but they are implementable for some important classes of problem
including semi-definite and second-order cone programming.

Consider the standard form LP and its dual:

(P )
minx cT x

Ax = b

x ≥ 0
(D)

maxy,s bT y

AT y + s = c

s ≥ 0

where we assume A ∈ <m×n has rank m.
Define:

F(P ) := {x ∈ <n : Ax = b, x ≥ 0},
F◦(P ) := {x ∈ <n : Ax = b, x > 0},
F(D) := {(y, s) ∈ <m × <n : AT y + s = c, s ≥ 0},
F◦(D) := {(y, s) ∈ <m × <n : AT y + s = c, s > 0}.

IPMs generate a sequence of points in F ◦(P ) or in F◦(P )×F◦(D) converging to an optimal
solution. They never (except when all feasible solutions are optimal) generate an optimal
solution and hence are infinite iterative algorithms. However, in practice, we get solutions
which are within a distance 10−8 of the optimal value in 10 to 50 iterations. However these
iterations are more expensive than those of the simplex or ellipsoid methods. The number of
iterations needed perhaps grows logarithmically in n. Theoretically we can show that such
IPMs can generate ε-optimal solutions in O(n ln 1

ε
) or O(

√
n ln 1

ε
) iterations.

Suppose we are given x̄ ∈ F ◦(P ), and we want to “improve” it. Since x̄ > 0, we ignore
non-negativities and try to decrease cT x staying in {x : Ax = b}.

1



N.B.: Norms in this lecture will always be considered in the L2 sense.
Look at the steepest-descent idea:

min{cT x : Ax = b, ‖x − x̄‖ ≤ α} (α > 0).

The solution is :
x = x̄ + αd̄

where d̄ is the solution of

min uTd

Ad = 0

‖d‖ ≤ 1

for u = c.

Proposition 1 If u is not in the range of AT , then the solution to the above problem is:

d̄ =
PAu

‖PAu‖ ,

where PA = I − AT (AAT )−1A.

Also uT d̄ = −‖PAu‖ < 0.

Proof : Note that, since A has full row rank, AAT is positive definite and hence non-singular.
So PA is well defined. Also, PAu = 0 implies that u lies in the range of AT , so PAu 6= 0 and d̄

is well defined.
For any d with Ad = 0, we have

(PAu)Td = uTd − uTAT (AAT )−1(Ad)

= uTd.

So, we can minimise (PAu)T d instead. If we minimise this over ‖d‖ ≤ 1, we get that d̄ is optimal
by Cauchy-Schwarz. But since APA = 0, so d̄ satisfies the Ad = 0 constraints too. This shows
that d̄ is the solution to the preceding problem. Finally,

uT d̄ = −uT PAu

‖PAu‖
= −‖PAu‖
< 0.

(See the homework.)

Note that if c ∈ R(AT ), then all feasible solutions are optimal. So assume henceforth
c 6∈ R(AT ).
We cannot keep going in direction d̄ from any x̄ ∈ F ◦(P ), since then we would converge to

2



a non-optimal point. But d̄ looks good if x̄ is far from all non-negative constraints, e.g., if

x̄ = e :=













1
1
...
1













∈ <n.

Given any arbitrary x̄ ∈ F ◦(P ), we can rescale the problem so that x̄ looks like e.

Let X̄ := Diag(x̄) :=









x̄1

. . .

x̄n









.

Consider the linear transformation x 7−→ x̂ = X̄−1x. This transforms (P ) to

(P̄ )
min(X̄c)T x̂

(AX̄)x̂ = b

x̂ ≥ 0,

and x̄ is transformed to e ∈ F ◦(P̄ ). In this scaled problem, we can consider moving in direction

d̂ := −P
AX̄

(X̄c)

‖P
AX̄

(X̄c)‖
. This corresponds to moving in the original space in direction

d̄ :=
−X̄PAX̄(X̄c)

‖PAX̄X̄c‖ .

Note that d̂ solves :

min(X̄c)T d

(AX̄)d = c

‖d‖ ≤ 1.

So d̄ solves

min cT d

Ad = 0

‖X̄−1d‖ ≤ 1.

This direction d̄ is called the (primal) affine-scaling direction and one can get algorithms based
on it suggested by I.I.Dikin (1967), and rediscovered by several people after Karmakar’s paper.
This method is reasonably efficient, but is not thought to be polynomial. Note that

PAX̄ = I − X̄AT (AX̄2AT )−1X̄,

so that the matrix that needs to be inverted (or more accurately, for which we have to solve a
linear system) changes at each iteration. Hence each iteration involves O(m3) work. Note that
d̄ is required to satisfy ‖X̄−1d‖ ≤ 1, so this is steepest descent with respect to some norm that

3



changes with x̄.
Also −X̄PAX̄X̄c solves

min cT d + 1
2
dT X̄−2d

Ad = 0,

which can be viewed (perhaps) as minimizing the quadratic approximation to some nonlinear
function while staying in the feasible set. This raises the question: Is there a function F with
∇2F (x) = X−2? Yes!

F (x) := − ln(x)

:= −
∑

j

ln(xj)

satisfies it. This is called the logarithmic barrier function. Introducing F answers another
question for IPMs: how can we compare two points x̄ and x̂ in F ◦(P )? Now we have two
criteria: cT x compares their objective function values while F (x) compares how close they are
to the “center” of the feasible region.

4


