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Let’s continue with the proof of Theorem 2.

Theorem 2 The minimum volume ellipsoid containing {x ∈ E : aT x ≤ aT z} is E(z+, B+)
where

z+ = z − τ Ba√
aT Ba

,

B+ = δ
(

B − σ BaT aB
aT Ba

)

.

Figure 1: Ellipsoid method

Proof: Last time we have derived the inequalities

(x − z)T B−1(x − z) ≤ 1, (E1)

((x − z)T ā + α)(āT (x − z) + 1) ≤ 0. (E2)

where ā = a√
aT Ba

. Let’s continue by deriving the sum (1 − σ)(E1) + σ(E2):

(x − z)T
(

(1 − σ)B−1 + σāāT
)

(x − z) + σ(1 + α)āT (x − z) ≤ (1 − σ) − σα.

We would like to arrange the terms so that we have a “complete square” on the left hand side.
Note that āT Bā = 1 and this implies

(

(1 − σ)B−1 + σāāT
)

Bā = (1 − σ)ā + σā(āT Bā) = (1 − σ)ā + σā = ā.
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We can use this fact as well as āT Bā = 1 to derive

(

x − z +
σ(1 + α)

2
Bā

)T
(

(1 − σ)B−1 + σāāT
)

(

x − z +
σ(1 + α)

2
Bā

)

≤ (1−σ)−σα+
σ2(1 + α)2

4
.

Now to simplify the right hand side let’s denote

δ =
1

1 − σ

(

(1 − σ) − σα +
σ2(1 + α)2

4

)

,

and the RHS becomes δ(1 − σ). Then we can use the Sherman-Morrison formula to derive

(

B−1 +
σ

1 − σ
āāT

)−1

= B − σBāāT B.

So our inequality can finally take the form of

(x − z+)T B−1
+ (x − z+) ≤ 1,

where

z+ = z − (1 + α)σ

2
Bā and B+ = δ(B − σBāāT B).

Now we are free to choose any σ to make the formulas as nice as possible. So let’s choose

σ =
2(1 + mα)

(1 + m)(1 + α)
,

so that

(1 − σ) =
m − 1

m + 1
· 1 − α

1 + α
and δ =

(1 − α)2m2

(m2 − 1)
.

Then σ lies between 0 and 1 as long as −1/m ≤ α ≤ 1, so our inequalities are valid. Also, z+

is given as in the statement of the theorem because of the choice of τ .
This defines an ellipsoid E+ = E(z+, B+) with a volume Vol(E+) =

√

detB+ so that

Vol(E+)

Vol(E)
=

√

detB+

detB
=

√

δm(1 − σ) =

√

(

(1 − α2)m2

(m2 − 1)

)m
(m − 1)

(m + 1)

(1 − α)

(1 + α)
=

= (1 − α2)
m−1

2 (1 − α)

(

m2

m2 − 1

)
m−1

2

(

m

m + 1

)

.

There is still one parameter, α, left in the model. Note that if α = −1/m then σ = 0 and
δ = 1, and that gives us exactly the same ellipsoid as the one we started with. On the other
hand, for α = 0 we find that the ratio of the volumes is

Vol(E+)

Vol(E)
=

(

m2

m2 − 1

)
m−1

2

(

m

m + 1

)

=

(

1 +
1

m2 − 1

)
m−1

2

(

1 − 1

m + 1

)

<
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<

(

exp
1

m2 − 1

)
m−1

2

exp
−1

m + 1
= exp

−1

2(m + 1)
.

ut
Thus we have proved Theorem 2 except for the “minimum volume” part. But even without
this we know that in O(m2 ln R

r
) iterations we either find an x ∈ Q or we know that Q is empty.

(For the full gory details, see M. J. Todd, “On minimum volume ellipsoids containing part of a
given ellipsoid,” Mathematics of Operations Research 7 (1982), 253-261.)

However, all this holds only under the assumption that if Q is nonempty, it contains a ball
B(x̂, r). This is not always the case in problems we are interested in, but if we restrict ourselves
to integer input, we can modify the problem to ensure that this assumption holds.

Recall that we are searching for an feasible solution to the problem AT x ≤ b where A ∈ Z
m×n.

We have already defined, for an integer z, size(z) = dlog2(|z| + 1)e + 1. We can generalize this
to say that for a vector v ∈ Z

p, size(v) =
∑

size(vj) and for a matrix M ∈ Z
p×q we have that

size(M) =
∑

size(mij). Let’s denote L := size(A)+ size(b).

Lemma 1 The following is true:

(a) If v ∈ Z
p then || v||∞ ≤ || v||2 ≤ || v||1 ≤ 2 size (v).

(b) If M ∈ Z
p×q, then |det(M)| ≤ 2 size (M).

(c) Any square submatrix of [AT , b] has an absolute value of determinant bounded by 2L.

Proof:

(a) Let’s denote

βj =

{

2 if |vj| = 1,
|vj| otherwise.

Then
|| v||1 =

∑

|vj| ≤
∑

βj ≤
∏

vj 6=0

βj ≤
∏

vj 6=0

2size(vj ) = 2
P

size|vj | ≤ 2size|v|.

The other two inequalities are well known.

(b) We can use Hadamard’s inequality (which represents the determinant as the volume of a
solid, which is biggest if its edges are orthogonal) to get

|det(M)| ≤
p

∏

j=1

||mj||2 ≤
p

∏

j=1

2size(mj) = 2size(M).

(c) As the size of the submatrix is less than or equal to the size of the matrix itself, we can
again use the Hadamard’s inequality to prove this part.

ut
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Lemma 2 If AT x ≤ b is feasible, it has a solution x with || x||∞ ≤ 2L.

Proof: We want to find a basic feasible solution to AT x ≤ b. There is a possibility that this
describes a not-pointed polyhedron, but we can transform it to be pointed. If it contains a line
{x + αd, α ∈ R}, we can choose an index j such that dj 6= 0, set xj = 0 and continue. Note
that setting xj = 0 in this case keeps feasibility. After a sufficient number of steps we either
obtain a pointed polyhedron (that has an extreme point – a BFS we are looking for) or we set
all x’s to zero and then x = 0 is a feasible solution.

Anyhow, we have a basic feasible solution – so it satisfies the system of equations AT
JKxJ = bK

where we have possibly removed some redundant equations to get a square system. Now
we know the system can be solved using Cramer’s rule, so that xj =

det(Mj)

det(M0)
where both

matrices Mj and M0 are submatrices of [AT , b]. Hence for the determinant of Mj we know that
|det(Mj)| ≤ 2L while |det(M0)| ≥ 1 because the matrix M0 is nonsingular and integer-valued.
So, together |xj| ≤ 2L and hence ||x||∞ ≤ 2L. ut
So we can replace the system AT x ≤ b with

AT x ≤ b ,
x ≤ 2Le ,

−x ≤ 2Le.

and assume this system is our new AT x ≤ b. Then all feasible solutions lie in B(0,
√

m2L),
while the size of the new system is polynomial in L.

Lemma 3 Suppose the system AT x ≤ b has size L. Then:

(a) If AT x ≤ b is infeasible, so is AT x ≤ b + 2−L

m+2
e.

(b) If this system is feasible, there is some x̂ ∈ R
m for which

B

(

x̂,
2−2L

m + 2

)

⊆ {x : AT x ≤ b +
2−L

m + 2
e}.

Proof:

(a) If AT x ≤ b is infeasible, then by the Farkas lemma, the system

Ay = 0, bT y = −1, y ≥ 0.

is feasible. Throwing out the linearly dependent rows of A we can find a BFS ŷ, that has
(by the Cramer’s rule argument used in the previous proof) every component bounded
by 2L.

So we have || ŷ||∞ ≤ 2L and at most (m + 1) components of ŷ are nonzero. Let’s check

(

b +
2−L

m + 2
e

)T

ŷ = bT ŷ +
2−L

m + 2

∑

ŷi < bT ŷ + 1 = 0,
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and therefore ŷ satisfies the Farkas lemma system

Aŷ = 0,

(

b +
2−L

m + 2
e

)T

ŷ < 0, ŷ ≥ 0.

So the “dual” system AT x ≤ b + 2−L

m+2
e is infeasible.

(b) Let x̂ be feasible in AT x ≤ b and || x̂||∞ ≤ 2L. Look at x ∈ B
(

x̂, 2−2L

m+2

)

. Let’s compute

aT
i x = aT

i x̂ + aT
i (x − x̂) ≤ bi + || ai||2|| x − x̂||2 ≤ bi + 2L 2−2L

m + 2
= bi +

2−L

m + 2
.

Therefore we know that

B

(

x̂,
2−2L

m + 2

)

⊆ {x : AT x ≤ b +
2−L

m + 2
e}.

ut
So we see that if we add the bounding constraints and perturb the RHS, we obtain a system
that satisfies the conditions for the ellipsoid method for

r =
2−2L

m + 2
and R =

√
m2L +

2−2L

m + 2
.

For this r and R we have log(R/r) polynomial in L.
The last problem that could arise is what if the solution obtained by the ellipsoid method is
not feasible in the original problem? In that case we need to adjust the obtained solution -
we can start by investigating whether setting x1 = 0 gives us a feasible solution. If so, we
add that constraint (or eliminate x1) and we can continue with the other variables. Eventually
we get a feasible system with as many variables set to zero as possible. Then we can look
at the inequality constraints and see if there is a feasible solution if we force the first to hold
as an equality. If so, we make that an equality and move to the next inequality and so on.
Eventually we have set as many variables to zero and as many constraints to be equalities as
possible. We take the resulting system of equations and solve it (in polynomial time) to get a
feasible solution to the original inequalities. We’re finally done!
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