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Dantzig-Wolfe Decomposition (continued)

min cT
1 x1 + ... + cT

k xk

(P ) A01x1 + ... + A0kxk = b0

A11x1 = b1

...
Akkxk = bk

x1 ≥ 0, ..., xk ≥ 0.

min
∑k

j=1(
∑

h(c
T
j vjh)λjh +

∑
i(c

T
j dji)µji)

(MP )
∑k

j=1(
∑

h(A0jvjh)λjh +
∑

i(A0jdji)) = b0∑
h λjh = 1, j = 1, 2, ..., k

λjh, µji ≥ 0, all j, h, i.

Conclusion: We can solve (MP ) by the revised simplex method by solving at most k
subproblems at each iteration to prove optimality or generate a new column for (MP ) with
negative reduced cost.
Each iteration requires
1)Pass y and z down to subproblems, and solve 1 to k LP subproblems (SPj) to prove optimality
or generate column.

2) Form a column

(
A0jvjh

ej

)
or

(
A0jdji

0

)
to enter into the basis of (MP ) and perform a

pivot.
Pros and cons:
Pros: We’re dealing with problem (MP ) with fewer rows than (P ) and with small subproblems.
So we “should” save on arithmetic operations per iteration, and on storage.
Cons: We may need lots of iterations in the (SPj)’s. We may need lots of iterations in (MP ).

Typically, folklore claims that the number of iterations for simplex method to solve a prob-
lem with m equations in n unknowns is about 2m to 3m (For phase I and phase II). But this
only holds for “reasonably” square problems, say n ≤ 10m (which is not true for (MP )).

We often observe long tails in convergence:

6

-

objective function value

iterations

It may be worth terminating before the optimal solution is found, if we’re within a guaran-
teed amount of optimal value.
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Computational complexity of the simplex method and of linear programming

We start with a more informal analysis of the simplex method then give a more formal
treatment of LP in general (hence, get new algorithms). Each iteration of the simplex method
requires O(mn) arithmetic operations (+,−, ∗,÷, comparison), so the question is: is the number
of iterations required polynomial in m and n (polynomial-good, exponential-bad) (Cobham,
Edmonds(’60s); von Neumann(’53))?

So far, our bounds on the number of iterations are by the number of basic feasible solutions,
and this can be exponential. E.g., {y ∈ Rm : 0 ≤ y ≤ e} has 2m vertices, but only 2m = n
inequalities in m variables. Could the/a simplex method visit all of them?
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Figure: Maximize y3. Objective function non-decreasing path of 23 = 8 vertices, m = 3

Consider
max ym

(D) ε ≤ y1 ≤ 1− ε
εyi−1 ≤ yi ≤ 1− εyi−1, i = 2, ..,m,

where 0 < ε < 1/2. Theorem
(a) The feasible region of (D) has 2m vertices.
(b) These vertices can be ordered v1, v2, .., v2m

so that vk−1
m < vk

m, k = 2, .., 2m, and [vk−1, vk] is
an edge of this polytope for each j.
[v, w] = {(1− λ)v + λw : 0 ≤ λ ≤ 1} is an edge of polyhedron Q ⊆ Rm if v 6= w and there is
some b ∈ Rm with arg max

{
bT y : y ∈ Q

}
= [v, w] ⇔ v and w are vertices of Q and share m−1

linearly independent tight inequalities.
Proof:
(a) First, we construct 2m vertices: for each vertex u of the unit cube [0, 1]n, let

vi =

{
εvi−1, if ui = 0

1− εvi−1, if ui = 1, for i = 1, 2, ..,m (v0 ≡ 1).

Then either vi ∈ (0, ε] or in [1 − ε, 1) (by induction), so v is feasible (εvi−1 < 1 − εvi−1 since
ε < 1/2) and all such v’s are distinct (again since ε < 1/2), and all are vertices (satisfy m
linearly independent constraints with equality, whose coefficients are columns of the matrix
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below): 
1 ±ε 0 ... ... 0
0 1 ±ε ... ... 0
0 0 1 ... ... 0
... ... ... ... ... 0
0 0 0 ... 1 ±ε
0 0 0 ... 0 1


These are in fact all the vertices. No vertex v can satisfy εvi−1 = vi = 1 − εvi−1, for then

vi−1 = 1
2ε

> 1. So we can only choose one of each pair of inequalities yi ≥ εyi−1, yi ≤ 1− εyi−1

to be tight. So each vertex chooses exactly one of each pair, so is a v constructed as above. ut
(b) By induction on m.
Base case: m = 1. Vertices ε and 1− ε.
Assume true for less than m, and consider case m. Look at the sequence of vertices of the
feasible region of (D) for dimension m − 1, say u1, u2, ..., u2m−1

. Let vj := (uj; εuj
m−1) for

1 ≤ j ≤ 2m−1 and let v2m−j+1 = (uj; 1− εuj
m−1) for 1 ≤ j ≤ 2m−1.

These are all vertices of the feasible region of (D) by the construction in (a).
For 2 ≤ j ≤ 2m−1, we have vj

m = εuj
m−1 > εuj−1

m−1 = vj−1
m and [vj−1

m ; vj
m] is an edge of the

polytope since the points on the edge satisfy enough equalities, since uj−1 and uj both satisfy
m − 2 of the first 2(m − 1) inequalities tightly (and so do vj−1 and vj), but they also satisfy
ym = εym−1, i.e., a total of m− 1 linearly independent inequalities.
Similarly, v2m−j+2 = v2m−(j−1)+1 = 1− εuj−1

m−1 > 1− εuj
m−1 = v2m−j+1

m for 2 ≤ j ≤ 2m−1,
and again, [v2m−j+1, v2m−j+2] is an edge of the polytope.
Finally, v2m−1

= (u2m−1
; εu2m−1

m−1 ) and v2m−1+1 = v2m−2m−1+1 = (u2m−1
; 1− εu2m−1

m−1 ).

εu2m−1

m−1 < 1 − εu2m−1

m−1 (ε < 1/2) and both vertices satisfy the same m − 1 linearly independent

inequalities tightly (the same as u2m−1
). ut

If we add slack variables in the natural order:

y1 − s1 = ε, y1 + s2 = 1− ε, y2 − εy1 − s3 = 0, ...,

and use Bland’s rule, we generate exactly this sequence of vertices.
Indeed, we can construct a problem that takes 2m − 1 steps for Dantzig’s most negative

reduced cost rule:

max 2m−1y1 + ... + 2ym−1 + ym

1y1 ≤ 5
4y1 + y2 ≤ 52

... ...
2my1 + 2m−1y2 + ... + 4ym−1 + ym ≤ 5m

y ≥ 0.
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