Dantzig-Wolfe Decomposition (continued)

$$
\begin{aligned}
& \min \quad c_{1}^{T} x_{1}+\ldots+c_{k}^{T} x_{k} \\
& (P) \quad A_{01} x_{1}+\ldots+A_{0 k} x_{k}=b_{0} \\
& A_{11} x_{1}=b_{1} \\
& A_{k k} x_{k}=b_{k} \\
& x_{1} \geq 0, \ldots, x_{k} \geq 0 . \\
& \begin{array}{rlll}
\min & \sum_{j=1}^{k}\left(\sum_{h}\left(c_{j}^{T} v_{j h}\right) \lambda_{j h}+\sum_{i}\left(c_{j}^{T} d_{j i}\right) \mu_{j i}\right) & \\
& \sum_{j=1}^{k}\left(\sum_{h}\left(A_{0 j} v_{j h}\right) \lambda_{j h}+\sum_{i}\left(A_{0 j} d_{j i}\right)\right) & =b_{0} \\
& \sum_{h} \lambda_{j h} & =1, \quad j=1,2, \ldots, k \\
& & & \\
& & \text { all } j h, h, i .
\end{array} \\
& \text { (MP) }
\end{aligned}
$$

Conclusion: We can solve ($M P$) by the revised simplex method by solving at most k subproblems at each iteration to prove optimality or generate a new column for (MP) with negative reduced cost.

Each iteration requires

1)Pass \bar{y} and \bar{z} down to subproblems, and solve 1 to k LP subproblems $\left(S P_{j}\right)$ to prove optimality or generate column.
2) Form a column $\binom{A_{0 j} v_{j h}}{e_{j}}$ or $\binom{A_{0 j} d_{j i}}{0}$ to enter into the basis of (MP) and perform a pivot.

Pros and cons:

Pros: We're dealing with problem $(M P)$ with fewer rows than (P) and with small subproblems. So we "should" save on arithmetic operations per iteration, and on storage.
Cons: We may need lots of iterations in the $\left(S P_{j}\right)$'s. We may need lots of iterations in (MP).
Typically, folklore claims that the number of iterations for simplex method to solve a problem with m equations in n unknowns is about $2 m$ to $3 m$ (For phase I and phase II). But this only holds for "reasonably" square problems, say $n \leq 10 m$ (which is not true for ($M P$).

We often observe long tails in convergence:
$\xrightarrow{\text { objective function }}$ iterations
It may be worth terminating before the optimal solution is found, if we're within a guaranteed amount of optimal value.

Computational complexity of the simplex method and of linear programming

We start with a more informal analysis of the simplex method then give a more formal treatment of $L P$ in general (hence, get new algorithms). Each iteration of the simplex method requires $O(\mathrm{mn})$ arithmetic operations $(+,-, *, \div$, comparison), so the question is: is the number of iterations required polynomial in m and n (polynomial-good, exponential-bad) (Cobham, Edmonds('60s); von Neumann('53))?

So far, our bounds on the number of iterations are by the number of basic feasible solutions, and this can be exponential. E.g., $\left\{y \in \mathcal{R}^{m}: 0 \leq y \leq e\right\}$ has 2^{m} vertices, but only $2 m=n$ inequalities in m variables. Could the/a simplex method visit all of them?

${ }^{y_{1}}$ Figure: Maximize
Consider

$$
\begin{array}{ll}
(D) \quad & \varepsilon \leq y_{1} \leq 1-\varepsilon \\
\varepsilon y_{i-1} \leq y_{i} \leq 1-\varepsilon y_{i-1}, \quad i=2, . ., m
\end{array}
$$

where $0<\varepsilon<1 / 2$. Theorem
(a) The feasible region of (D) has 2^{m} vertices.
(b) These vertices can be ordered $v^{1}, v^{2}, . ., v^{2^{m}}$ so that $v_{m}^{k-1}<v_{m}^{k}, k=2, . ., 2^{m}$, and $\left[v^{k-1}, v^{k}\right]$ is an edge of this polytope for each j.
$[v, w]=\{(1-\lambda) v+\lambda w: 0 \leq \lambda \leq 1\}$ is an edge of polyhedron $Q \subseteq \mathcal{R}^{m}$ if $v \neq w$ and there is some $b \in \mathcal{R}^{m}$ with $\arg \max \left\{b^{T} y: y \in Q\right\}=[v, w] \Leftrightarrow v$ and w are vertices of Q and share $m-1$ linearly independent tight inequalities.

Proof:

(a) First, we construct 2^{m} vertices: for each vertex u of the unit cube $[0,1]^{n}$, let

$$
v_{i}=\left\{\begin{array}{rll}
\varepsilon v_{i-1}, & \text { if } & u_{i}=0 \\
1-\varepsilon v_{i-1}, & \text { if } & u_{i}=1, \text { for } i=1,2, . ., m \quad\left(v_{0} \equiv 1\right) .
\end{array}\right.
$$

Then either $v_{i} \in(0, \varepsilon]$ or in $[1-\varepsilon, 1)$ (by induction), so v is feasible $\left(\varepsilon v_{i-1}<1-\varepsilon v_{i-1}\right.$ since $\varepsilon<1 / 2$) and all such v 's are distinct (again since $\varepsilon<1 / 2$), and all are vertices (satisfy m linearly independent constraints with equality, whose coefficients are columns of the matrix
below):

$$
\left(\begin{array}{cccccc}
1 & \pm \varepsilon & 0 & \ldots & \ldots & 0 \\
0 & 1 & \pm \varepsilon & \ldots & \ldots & 0 \\
0 & 0 & 1 & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1 & \pm \varepsilon \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

These are in fact all the vertices. No vertex v can satisfy $\varepsilon v_{i-1}=v_{i}=1-\varepsilon v_{i-1}$, for then $v_{i-1}=\frac{1}{2 \varepsilon}>1$. So we can only choose one of each pair of inequalities $y_{i} \geq \varepsilon y_{i-1}, y_{i} \leq 1-\varepsilon y_{i-1}$ to be tight. So each vertex chooses exactly one of each pair, so is a v constructed as above.
(b) By induction on m.

Base case: $m=1$. Vertices ε and $1-\varepsilon$.
Assume true for less than m, and consider case m. Look at the sequence of vertices of the feasible region of (D) for dimension $m-1$, say $u^{1}, u^{2}, \ldots, u^{2^{m-1}}$. Let $v^{j}:=\left(u^{j} ; \varepsilon u_{m-1}^{j}\right)$ for $1 \leq j \leq 2^{m-1}$ and let $v^{2^{m}-j+1}=\left(u^{j} ; 1-\varepsilon u_{m-1}^{j}\right)$ for $1 \leq j \leq 2^{m-1}$.
These are all vertices of the feasible region of (D) by the construction in (a).
For $2 \leq j \leq 2^{m-1}$, we have $v_{m}^{j}=\varepsilon u_{m-1}^{j}>\varepsilon u_{m-1}^{j-1}=v_{m}^{j-1}$ and $\left[v_{m}^{j-1} ; v_{m}^{j}\right]$ is an edge of the polytope since the points on the edge satisfy enough equalities, since u^{j-1} and u^{j} both satisfy $m-2$ of the first $2(m-1)$ inequalities tightly (and so do v^{j-1} and v^{j}), but they also satisfy $y_{m}=\varepsilon y_{m-1}$, i.e., a total of $m-1$ linearly independent inequalities.
Similarly, $v^{2^{m}-j+2}=v^{2^{m}-(j-1)+1}=1-\varepsilon u_{m-1}^{j-1}>1-\varepsilon u_{m-1}^{j}=v_{m}^{2^{m}-j+1}$ for $2 \leq j \leq 2^{m-1}$, and again, $\left[v^{2^{m}-j+1}, v^{2^{m}-j+2}\right]$ is an edge of the polytope.
Finally, $v^{2^{m-1}}=\left(u^{2^{m-1}} ; \varepsilon u_{m-1}^{2^{m-1}}\right)$ and $v^{2^{m-1}+1}=v^{2^{m}-2^{m-1}+1}=\left(u^{2^{m-1}} ; 1-\varepsilon u_{m-1}^{2^{m-1}}\right)$.
$\varepsilon u_{m-1}^{2^{m-1}}<1-\varepsilon u_{m-1}^{2^{m-1}}(\varepsilon<1 / 2)$ and both vertices satisfy the same $m-1$ linearly independent inequalities tightly (the same as $u^{2^{m-1}}$).

If we add slack variables in the natural order:

$$
y_{1}-s_{1}=\varepsilon, y_{1}+s_{2}=1-\varepsilon, y_{2}-\varepsilon y_{1}-s_{3}=0, \ldots
$$

and use Bland's rule, we generate exactly this sequence of vertices.
Indeed, we can construct a problem that takes $2^{m}-1$ steps for Dantzig's most negative reduced cost rule:

$$
\begin{array}{lll}
\max & 2^{m-1} y_{1}+\ldots+2 y_{m-1}+y_{m} & \\
& 1 y_{1} & \leq 5 \\
& 4 y_{1}+y_{2} & \leq 5^{2} \\
& \ldots & \ldots \\
& 2^{m} y_{1}+2^{m-1} y_{2}+\ldots+4 y_{m-1}+y_{m} & \leq 5^{m} \\
& y \geq 0 &
\end{array}
$$

