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1 Dantzig-Wolfe Decomposition

We want to solve the large-scale LP:

min cT
1 x1 + ... + cT

k xk

A01x1 + ... + A0kxk = b0

A11x1 = b1 (P)

...

Akkxk = bk

x1, x2, ..., xk ≥ 0,

where xj ∈ Rnj , 1 ≤ j ≤ k, b0 ∈ Rm0 , bj ∈ Rmj , 1 ≤ j ≤ k, and Aij ∈ Rmi×mj , i = 0..k, j = 1..k.
Therefore, there are totally m0 +

∑
mj constraints and

∑
nj variables. This LP is in a Block-

angular Form, i.e. in the form of Fig. 1.

Figure 1: Block-angular Form

Application: a corporation has k divisions:

Division j (1 ≤ j ≤ k) has its own decision variables xj and its own “local” constraints,
Ajjxj = bj, xj ≥ 0. Also, the corporation has its own resources/goals and corresponding linear
constraints. The objective is to minimize cost.
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Note: we allow k = 1, i.e. “only one division.” The key is that the part A11x1 = b1, x1 ≥ 0
of the problem should be easier to deal with (e.g. network flow).

Note: (P ) is just

min cT
1 x1 + ... + cT

k xk

A01x1 + ... + A0kxk = b0

x1 ∈ Q1, x2 ∈ Q2, ..., xk ∈ Qk

where Qj is the polyhedron {xj ∈ Rnj : Ajjxj = bj, xj ≥ 0}, which is assumed to be nonempty
for all j otherwise the problem is infeasible.

Now, we use the representation theorem (Thm 2 in notes 9/6, Thm 1 of 9/8 or recitation notes
III of 9/14):

Qj = {xj =

Nj∑

h=1

λjhvjh +

Rj∑
i=1

µjidji : λjh ≥ 0 all h,
∑

h

λjh = 1, µjh ≥ 0, all i}

where vjh, h = 1, .., Nj, are all the extreme points of Qj and dji, i = 1, .., Rj, are all the extreme
rays of Qj. Here Rj can be 0, if Qj is bounded.

So we can substitute for each xj in (P ) to get the following Master Problem:

min
k∑

j=1

(∑

h

(cT
j vjh)λjh +

∑
i

(cT
j dji)µji

)

k∑
j=1

(∑

h

(A0jvjh)λjh +
∑

i

(A0jdji)µji

)
= b0 (MP )

∑

h

λjh = 1, j = 1, 2, ..., k

λjh, µji ≥ 0, all j, h, i.

(P ) has m0 +
∑k

1 mj rows and
∑k

1 nj variables.

(MP ) has m0 + k rows and
∑k

1(Nj + Rj) variables.

We want to solve (MP ) using the revised simplex method and column generation.

Proposition 1 (P ) and (MP ) have the same optimal value (possibly −∞ or +∞) and every
feasible solution of (P ) corresponds to a feasible solution of (MP ) with the same objective
function value and vice-versa.
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Proof: Immediate from representation theorem. ¤
Important Note: The correspondence is NOT 1-1.

How can we apply the revised simplex method to (MP )? We need an initial basic feasible
solution and a way to generate new columns as needed.

For the initial solution, we can solve, say:

min cT
j xj, xj ∈ Qj,

for each j. If infeasible, quit; otherwise we generate a vertex, say vj1 (either optimal or adjacent
to an unbounded ray).

Compute the corresponding column




A0jvj1

0
...
1
...
0




in (MP ) and introduce artificial variables

for the first m0 constraints and solve the phase I problem, again by column generation.

So, suppose we now have a basic feasible solution to (MP ), involving some λjh’s and µji’s.

We also have a corresponding dual solution ȳ =

(
ȳ0

z̄

)
where ȳ0 ∈ Rm0 , z̄ ∈ Rk. We are

optimal if all the reduced costs of variables λjh and µji are nonnegative.

Look at the reduced cost of λjh: it is

(cT
j vjh)− (A0jvjh)

T ȳ0 − z̄j = (cj − AT
0j ȳ0)

T vjh − z̄j ≥ 0(?)

We can check this by solving

min (cj − AT
0j ȳ0)

T xj

Ajjxj = bj (SPj)

xj ≥ 0.

(a) If the optimal value is ≥ z̄j, then reduced cost of each λjh is ≥ 0.

(b) If the optimal value is < z̄j, then λjh, where vjh is an optimal solution, has negative

reduced cost in (MP ), and we can calculate its column




A0jvjh

0
...
1
...
0




with cost cT
j vjh in (MP ).
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So we can continue the simplex method.

(c) Suppose (SPj) is unbounded, then we have found an extreme ray dji with (cj−A0j ȳ0)
T dji <

0. So we compute its column and enter it into the basis.

Note: (cj−A0j ȳ0)
T dji = (cT

j dji)−(A0jdji)
T ȳ0 is the reduced cost of µji, therefore all reduced

costs of µji’s in (a) and (b) are ≥ 0 (because the subproblem is bounded).

Note: Each (SPj) can be interpreted as a divisional problem, where the costs cj are modified
by AT

0j ȳ0, which can be thought of division j’s contribution to meeting corporate goals.

An example of a problem in R3 is illustrated in Fig. 2. Q is the 3-dimensional polytope
shown, while (P ) has two additional equality constraints, defining the line cutting through Q.
So the feasible region of (P ) is the line segment consisting of the part of the line intersecting
the polytope. Here are some comments on this example.

1. (MP ) problem could have many optimal solutions, although the corresponding (P ) only
has one optimal.The optimal solution indicated in the figure can be written as a convex
combination of extreme points a, c, e or as a convex combination of a, d, e.

2. For the final ȳ0, cj − AT
0j ȳ0 is normal to the top face of Q, so all its vertices are optimal

in the final subproblem.

3. The simplex iterations for (P ) update its basic feasible solution in the feasible region in
the figure, so there is at most one iteration after Phase I is done. However problem (MP )
updates its basic feasible solution by changing extreme points which in fact have a convex
combination in the feasible region in the figure, e.g. extreme points a, c, f give a convex
combination in the feasible region. Hence there are many more basic feasible solutions to
(MP ) than to (P ) here.
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Figure 2: An example
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