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1 Dantzig-Wolfe Decomposition
We want to solve the large-scale LP:

min ¢l z1 + ... + cf 2y,
Agll’l + ...+ Aokxk =bg
Allflfl = bl (P)

Aprxy = by,

L1, X2, -0y Tk 2 07

where z; e R",1 < j <k, by €c R™, b; e R™,1 < j <k, and A;; € R™>*™i i =0..k,j =1..k.
Therefore, there are totally mo +  m; constraints and ) | n; variables. This LP is in a Block-
angular Form, i.e. in the form of Fig. (1l

Figure 1: Block-angular Form

Application: a corporation has k divisions:

Division j (1 < j < k) has its own decision variables z; and its own “local” constraints,
Ajjx; =bj,x; > 0. Also, the corporation has its own resources/goals and corresponding linear
constraints. The objective is to minimize cost.



Note: we allow k = 1, i.e. “only one division.” The key is that the part Aj;21 = by, 21 >0
of the problem should be easier to deal with (e.g. network flow).

Note: (P) is just

min ¢ ¥1 + ... + cf Ty
Agrxy + ... + Aoz, = bo
71 € Q1,72 € Qa, ..., T} € Qy,

where (); is the polyhedron {z; € R™ : Aj;z; = b;, z; > 0}, which is assumed to be nonempty
for all 5 otherwise the problem is infeasible.

Now, we use the representation theorem (Thm 2 in notes 9/6, Thm 1 of 9/8 or recitation notes
IIT of 9/14):

N; R;

Qj = {xj = Z )\jhvjh + Njidji : )\jh Z 0 all h, Z )\jh = 1,,LLjh Z O, all Z}
h=1 1 h

= 1=

where v;,, h = 1,.., N;, are all the extreme points of (); and d;;,¢ = 1, .., R;, are all the extreme

rays of ();. Here R; can be 0, if @); is bounded.

So we can substitute for each z; in (P) to get the following Master Problem:
k
min Z (Z(C?Ujh))‘jh + Z(CJTd]Z)/Lﬂ>
j=1 h i
k
> (Z(AOJUjh))‘jh + Z(AOjdjz‘),ujz) = by (MP)
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(P) has mg + 3% m; rows and 3% n; variables.
(MP) has mg + k rows and 3.%(N, + R;) variables.

We want to solve (M P) using the revised simplex method and column generation.
Proposition 1 (P) and (M P) have the same optimal value (possibly —oo or +00) and every

feasible solution of (P) corresponds to a feasible solution of (M P) with the same objective
function value and vice-versa.



Proof: Immediate from representation theorem. [
Important Note: The correspondence is NOT 1-1.

How can we apply the revised simplex method to (M P)? We need an initial basic feasible
solution and a way to generate new columns as needed.

For the initial solution, we can solve, say:
T
min ¢; zj, ; € Qj,

for each j. If infeasible, quit; otherwise we generate a vertex, say v;; (either optimal or adjacent
to an unbounded ray).
Aog'vjl
0

Compute the corresponding column in (M P) and introduce artificial variables

0
for the first mg constraints and solve the phase I problem, again by column generation.

So, suppose we now have a basic feasible solution to (A P), involving some A;;’s and f1;;’s.
We also have a corresponding dual solution y = ( y; where 7, € R™, z € R¥. We are

optimal if all the reduced costs of variables A;, and j;; are nonnegative.
Look at the reduced cost of Aj;: it is
(¢ vin) — (Agjuin) 5o — Z = (¢ — AGy0) "vjn — 23 > 0(?)
We can check this by solving

min (¢; — AOTjgo)ij
Ajjz; = b; (SP;)
Z; Z 0.

(a) If the optimal value is > Z;, then reduced cost of each \jj, is > 0.

(b) If the optimal value is < Z;, then \j,, where vj, is an optimal solution, has negative
AOjUjh
0

reduced cost in (M P), and we can calculate its column with cost ¢} vy, in (MP).



So we can continue the simplex method.

(¢) Suppose (SP;) is unbounded, then we have found an extreme ray d;; with (¢;—Ag;yo)" dji <
0. So we compute its column and enter it into the basis.

Note: (¢; — Ao;0) " dji

= (c]de,-) — (Ao;dj;)" o is the reduced cost of yu;, therefore all reduced
costs of f1;;’s in (a) and (b) are

> 0 (because the subproblem is bounded).

Note: Each (SP;) can be interpreted as a divisional problem, where the costs ¢; are modified
by Agjgjo, which can be thought of division j’s contribution to meeting corporate goals.

An example of a problem in R? is illustrated in Fig. 2. @Q is the 3-dimensional polytope
shown, while (P) has two additional equality constraints, defining the line cutting through Q.
So the feasible region of (P) is the line segment consisting of the part of the line intersecting
the polytope. Here are some comments on this example.

1. (MP) problem could have many optimal solutions, although the corresponding (P) only
has one optimal. The optimal solution indicated in the figure can be written as a convex
combination of extreme points a, ¢, e or as a convex combination of a,d, e.

2. For the final g, ¢; — Agjgo is normal to the top face of (), so all its vertices are optimal
in the final subproblem.

3. The simplex iterations for (P) update its basic feasible solution in the feasible region in
the figure, so there is at most one iteration after Phase I is done. However problem (M P)
updates its basic feasible solution by changing extreme points which in fact have a convex
combination in the feasible region in the figure, e.g. extreme points a, ¢, f give a convex
combination in the feasible region. Hence there are many more basic feasible solutions to
(M P) than to (P) here.
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Figure 2: An example



