
Mathematical Programming Lecture 18
OR 630 Fall 2005 October 27, 2005
Notes by Tim Carnes

Network Simplex Method

For network LP problems we have the standard LP

min cT x
Ax = b

x ≥ 0

where A is the node-arc incidence matrix of a directed graph G. The rows of A are linearly
dependent, so we will assume

∑
i∈N bi = 0. We will also assume that G is connected and

that N = {1, 2, . . . , n}. (If G is not connected we could instead solve problems separately for

each connected component.) We’ll see that then A has rank n−1. Let Ã be the (n−1)×|A|
matrix obtained from A by removing the last row, which we will refer to as the reduced node-
arc incidence matrix of G. Similarly remove the last component of b to obtain b̃, which yields
the LP problem with constraints Ãx = b̃, which are equivalent to the original constraints.

What we would like to do now is relate the bases of Ã to graph-theoretic concepts in G,
and in particular spanning trees.

Lemma 1. Every tree on n > 1 nodes has at least two leaves, where a leaf is a node with
degree 1.

Proof. Suppose by way of contradiction that G′ = (N ,A′) is a tree on n > 1 nodes, with
either zero leaves or just one leaf. Choose a node i0 ∈ N , which is the single leaf of the tree,
or else an arbitrary node if there are no leaves. Start a walk at i0, in which we leave every
node (other than i0) via a different arc than the one in which it was entered. This is possible
because each of these nodes must have at least two incident arcs. Since there are a finite
number of nodes, eventually a node must be repeated on this walk, say ik = i`, k < `, is the
first repeat. Then the portion of the walk from ik to i` is a cycle. ¸

Theorem 1. For a directed graph G′ = (N ,A′), the following are equivalent:

(a) G′ is a tree (acyclic and connected);

(b) G′ is acyclic and has n− 1 arcs; and

(c) G′ is connected and has n− 1 arcs.

Note: This theorem may be thought of in terms of (n − 1)-dimensional vectors, where
acyclic is analogous to being linearly independent and being connected corresponds to span-
ning Rn−1.

Proof. By induction. For n = 1 there is only one possible graph which is the single node.
For this graph conditions (a), (b) and (c) trivially hold. Now assume the theorem is true for
all graphs with fewer than n nodes, where n > 1.

1

(a) ⇒ (b) Suppose G′ is acyclic and connected. By Lemma 1, G′ has a leaf. Remove this leaf and

its single incident arc to get G̃′, which is also acyclic and connected, and thus a tree.
Hence by the inductive hypothesis, G̃′ has n− 2 arcs, and so G′ has n− 1 arcs. X

(b) ⇒ (c) Let G′ be acyclic with n− 1 arcs. If G′ is not connected, consider its connected com-
ponents, G′

1, . . . , G
′
p, p > 1, each of which is connected and acyclic. By the induction

hypothesis, each component G′
i has |Ni| − 1 arcs, where Ni is its node set. So G′ has∑p

j=1(|N ′
j | − 1) = |N | − p arcs, but this is less than |N | − 1. ¸ X

(c) ⇒ (a) Suppose G′ is connected and has n− 1 arcs, but contains a cycle. We can remove any
arc that is part of this cycle and have the graph remain connected. By continuing to
remove arcs from any existing cycles, we must eventually obtain a connected acyclic
subgraph, which has n − 1 arcs by the inductive hypothesis. However, before we
removed any arcs the graph had n− 1 arcs. ¸ X

Theorem 2. Suppose G′ = (N ,A′) is a spanning tree of G, where |N | = n. Let Ã be the

reduced node-arc incidence matrix of G and B̃ be the reduced node-arc incidence matrix of
G′. Then the rows and columns of B̃ can be permuted to make it triangular, with ±1’s on
its diagonal.

Proof. The theorem holds trivially for n = 1. For n > 1, Lemma 1 shows that G′ has at
least two leaves. Choose a node other than n and label it 1. Now remove node 1 and its
incident arc, and find a leaf (other than n) of the resulting tree and label it 2. Continue in
this fashion until all nodes have been labelled.

Next we label the arcs. We will label an arc (i, j) or (j, i) with i < j as i. That is, we
label arcs by the endpoint that is farther from the root n, which implies that all the labels
are unique. This also means that all paths to the root n have increasing labels. An example
is shown in Figure 1. Now consider a column of B̃ corresponding to arc (i, j) or (j, i) ∈ A′,

.

10

9

8

7

6

5

4

3

2

1

294

8631

75

Figure 1: A sample tree labelled according to the conventions described in Theorem 2.

with i < j. There will be a +1 entry in the row corresponding to the tail, and a −1 entry
in the row corresponding to the head, and all the other entries will be zero. Thus the only

2

nonzero entries will be in rows i and j, and if j = n there will be no entry there. Since j > i
we have that B̃ is triangular. For the example corresponding to Figure 1 we have

B̃ =



−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 +1 0 0 0 0 0 0

+1 0 −1 +1 0 0 0 0 0
0 0 0 0 +1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 +1 +1 0
0 0 0 0 0 +1 0 −1 −1


.

Corollary 1. If G is connected, then it has a spanning tree and Ã has rank n− 1.

Proof. We can see G has a spanning tree by the same argument used to prove (c) ⇒ (a)

in Theorem 1. Then the corresponding columns of Ã form a nonsingular (n − 1) × (n − 1)
matrix, which has full row rank.

Corollary 2. Every basis matrix of Ã corresponds to arcs of a spanning tree.

Proof. Every spanning tree corresponds to a basis matrix of Ã by Theorem 2. Suppose we
have a basis, which is n−1 columns from Ã that are linearly independent. The corresponding
arcs cannot contain a cycle. (If they did, then we could add and subtract columns to get
zero, which would imply they are not linearly independent.) Thus we have n − 1 arcs with
no cycle, which corresponds to a tree.

Corollary 3. If all bi’s are integer then every basic solution of Ãx = b̃ is integer-valued.

Proof. We can solve B̃x̄ eB = b̃ by adding and subtracting only, so the solution consists of all
integers.

Note that this last corollary shows that every basic solution to the assignment problem
corresponds to a permutation.

Network Simplex Method

How do the steps of the usual primal simplex algorithm specialize in the network case? The

basic feasible solution is given by x̄ =

(
x̄ eB
x̄ eN

)
, where B̃x̄ eB = b̃. So we can solve for x̄ eB easily.

Indeed, we can calculate the flow on basic (tree) arcs sequentially, starting from the leaves
of the tree and working up to the root.

We can compute the corresponding dual solution ȳ from B̃T ȳ = c eB or BT ȳ = c eB if we
set ȳn = 0. When (i, j) is a tree arc we have

aT
ij ȳ = cij

or ȳi − ȳj = cij

3

For example, given ȳ10 = 0 and c4,10, we get ȳ4 = c4,10 + ȳ10. We then solve sequentially,
working down from the root and test the optimality of the obtained solution. If the solution
is not optimal we find a non-tree arc, say (i, j) (which corresponds to the entering non-basic

index “q”) with c̄ij = cij − ȳi + ȳj < 0. We can also solve B̃āij = ãij for āij, which will
correspond to ±1 entries on the arcs in the unique path connecting i to j in the current basic
spanning tree. There will be a +1 entry on arcs that are traversed forwards and a −1 entry
on arcs that are traversed backwards to get from i to j.

Note that there are polynomial-time variants of the network simplex method: see e.g.,
J.B. Orlin, S.A. Plotkin, and E. Tardos, Mathematical Programming 60 (1993) 255–276 for
the dual simplex algorithm, and J.B. Orlin, Mathematical Programming 78 (1997) 109–129
for the primal.

4

