
Mathematical Programming Lecture 17 OR 630 Fall 2005 October 25, 2005
Notes by Ilya Alexandrovich Sheynzon

Network problems and the Network Simplex Algorithm

(Chapter 7 of Bertsimas-Tsitsiklis, Chapter 19 of Chvatal).

A directed graph is a pair G = (N ,A), where N (usually {1, 2, 3, .., n}) is a finite set of
nodes and A ⊆ N × N is a set of arcs. Loops (arcs (i, i)), but not parallel edges (two arcs
(i, j)) (easy to adapt), and opposite arcs ((i, j) and (j, i)) are allowed. Arc (i, j) is from i to j;
i is its tail and j is its head; and i and j are its endpoints.

A walk in G is a sequence i0, e1, i1, e2, .., ek, ik, where each il ∈ N and each el ∈ A, with
either el = (il−1, il) (a forward arc) or el = (il, il−1)(a reverse arc). The walk is from i0 to ik. A
walk is a path if all the il’s are distinct. It is a cycle if i1, i2, .., ik are distinct, but i0 = ik, k ≥ 1,
and if k = 2, e1 6= e2.

A walk, path, or cycle is directed if all its arcs are forward. G is connected if there is a walk
(equivalently a path) from every node to every other node. G is acyclic if it has no cycle.

G′ = (N ,A′) with A′ ⊆ A is a (spanning) subgraph of G. A graph is a tree if it is connected
and acyclic. A spanning subgraph of G that is itself a tree is called a spanning tree of G.

For j ∈ N , the outdegree of j is | {k ∈ N : (j, k) ∈ A} | and indegree of j is | {i ∈ N : (i, j) ∈ A} |.
The degree is the sum of these.

A network is a directed graph G together with additional data associated to the nodes and
arcs. We will consider a vector b indexed by the nodes (bi is the net supply at node i) and a
vector c of costs (and possibly u of capacities) indexed by A (cij is the cost of arc (i, j)).

Let IRA :=
{
w = (wij)(i,j)∈A, all wij ∈ IR

}
(this can also be thought of as all functions from

A to IR). So c, u ∈ IRA, b ∈ IRN (= IRn if N = {1, 2.., n}).
A feasible flow is a vector x ∈ IRA satisfying∑

k:(j,k)∈A

xjk −
∑

i:(i,j)∈A

xij = bj

for all j ∈ N , x ≥ 0 (or 0 ≤ x ≤ u) (flow conservation at node j).
j ∈ N is a source if bj > 0, a sink if bj < 0, and a transshipment node if bj = 0. We want a

feasible flow with minimal cost
cT x =

∑
(i,j)∈A

cijxij.

Associated with G is its node-arc incidence matrix A with rows indexed by N and columns
by A with

ai,(j,k) =


0, if i /∈ {j, k} or j = k

+1, if i = j 6= k
−1, if i = k 6= j.
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If G has n nodes and m arcs, A is n×m, and each column has 2 nonzeroes (if not a loop),
a +1 at its tail row and a −1 at its head row (similarly, such a matrix A defines a directed
graph G). Then feasible flows are {x : Ax = b, x ≥ 0}.

Note: the sum of all the rows of A is the zero vector. So rank(A) < n = the number of rows,
and also

∑
j∈N bj = 0 is a necessary condition for the existence of a feasible flow. Henceforth,

assume
∑

j∈N bj = 0.

Examples
a) Shortest path.

Set bj =


+1, at the initial node
−1, at the final node

0, elsewhere.
b) Max flow.
Try to maximize the flow from source s to a sink t, with capacity restrictions.
The max flow problem can be reformulated as a network flow problem, by adding the arc (t, s)
with a cost cts = −1 and putting cost 0 on all other arcs, with bi = 0 for all i and upper bounds
equal to the capacity on all arcs except (t, s).
c) Transportation problem.

N = {1, 2, ..,m, 1′, 2′, .., n′} ,

A = {(i, j′) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} , G is bipartite,

bi = si > 0, 1 ≤ i ≤ m,

bj = −dj < 0, 1 ≤ j ≤ n.

We want
∑m

i=1 si =
∑n

j=1 dj. If m = n and all si’s, dj’s are equal to 1, this is the assignment
problem. If we have a transportation problem where the total flow out of node i is at most si

and the total flow into node j′ is at least dj, where the total supply exceeds the total demand
and all costs cij are nonnegative, we can make this into a regular transportation problem by
introducing a dummy demand of d0 =

∑m
i=1 si −

∑n
j=1 dj.
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Figure 1: A directed graph.
1, (1, 2), 2, (2, 4), 4 is a path from 1 to 4.
1, (1, 2), 2, (2, 4), 4, (4, 1), 1 is a directed cycle; so is 5, (5, 5), 5 using the loop (5, 5).
1, (1, 2), 2, (2, 4), 4, (3, 4), 3, (3, 1), 1 is a not directed cycle.
(3, 4) is a reverse arc.
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Figure 2: A spanning tree.
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Figure 3: A network corresponding to this directed graph with the loop omitted; a feasible
flow is shown.
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Figure 4: A directed graph corresponding to a transportation problem with m suppliers and n
consumers. If the total demand is less than total supply, then we can create a dummy sink 0′ to
absorb the difference between the two. The transportation costs for the units sent to 0′ should
be set to zero. Using the same argument, we can deal with network problems with inequalities
where the total demand is less than the total supply.
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Mathematical Programming Homework 8
OR 630 Fall 2005 Due November 4, 2005

1. An undirected graph is a pair (N , E), where N is a finite set of nodes and E a set of
(unordered) pairs {i, j} of nodes, called edges. The edge {i, j} is said to be incident on i and
j. The node-edge incidence matrix A of the graph has rows corresponding to each node and
columns corresponding to each edge, with a +1 if the edge is incident on the node and a 0
otherwise.

a) Consider the fractional node-covering problem: find a set of nonnegative weights for the
edges so that the total weight is minimized while the sum of the weights of the edges incident on
each node is at least one. Show that this can be formulated as a linear programming problem
whose coefficient matrix is the node-edge incidence matrix of the graph.

b) Show an example (it can be very small!) where the optimal solution is not integer-valued.
c) Suppose now that the graph is bipartite: N can be partitioned into N1 and N2 such that

each edge is incident on one node in N1 and one in N2. Show that the linear programming
problem in (a) can be written as a network flow problem and hence that it has an integer-valued
optimal solution.

2. Consider the dual simplex algorithm for a network flow problem. So suppose you have the
basic solution x̄ corresponding to some spanning tree, and all reduced costs c̄jk are nonnegative,
but some basic variable, say the pth x̄hi, is negative. So we want to remove this variable from
the basis, i.e., remove the arc (h, i) from the tree.

a) What happens to the spanning tree when arc (h, i) is removed?
b) In the dual simplex method, we want to choose some xq to enter the basis where āpq is

negative. In our case, what arcs (j, k) have āp,(j,k) negative, and what is āp,(j,k) for such arcs?
c) Which arc is chosen by the minimum ratio test to enter the basis?

3. a) Show that a network flow problem can have a degenerate basic solution only if∑
i∈I bi = 0 for some proper subset I of nodes.
b) Consider a transportation problem with supplies si and demands dj, all integer. Suppose

there are m sources and n sinks, and we modify the supplies and demands as follows: ŝi := nsi

for i < m, ŝm := nsm + n; d̂j = ndj + 1 for all j. Show that the new transportation problem
has all basic solutions nondegenerate.

c) Suppose you have an optimal basic feasible solution for the modified problem, corre-
sponding to a particular spanning tree. Show that the same spanning tree gives an optimal
basic feasible solution (possibly degenerate) to the original problem. (Hint: express each basic
variable in terms of the supplies and demands in part of the tree.)
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