Network problems and the Network Simplex Algorithm

(Chapter 7 of Bertsimas-Tsitsiklis, Chapter 19 of Chvatal).

A directed graph is a pair $G=(\mathcal{N}, \mathcal{A})$, where \mathcal{N} (usually $\{1,2,3, . ., n\})$ is a finite set of nodes and $\mathcal{A} \subseteq \mathcal{N} \times \mathcal{N}$ is a set of arcs. Loops ($\operatorname{arcs}(i, i)$), but not parallel edges (two arcs $(i, j))$ (easy to adapt), and opposite $\operatorname{arcs}((i, j)$ and $(j, i))$ are allowed. Arc (i, j) is from i to j; i is its tail and j is its head; and i and j are its endpoints.

A walk in G is a sequence $i_{0}, e_{1}, i_{1}, e_{2}, . ., e_{k}, i_{k}$, where each $i_{l} \in \mathcal{N}$ and each $e_{l} \in \mathcal{A}$, with either $e_{l}=\left(i_{l-1}, i_{l}\right)$ (a forward arc) or $e_{l}=\left(i_{l}, i_{l-1}\right)$ (a reverse arc). The walk is from i_{0} to i_{k}. A walk is a path if all the i_{l} 's are distinct. It is a cycle if $i_{1}, i_{2}, . ., i_{k}$ are distinct, but $i_{0}=i_{k}, k \geq 1$, and if $k=2, e_{1} \neq e_{2}$.

A walk, path, or cycle is directed if all its arcs are forward. G is connected if there is a walk (equivalently a path) from every node to every other node. G is acyclic if it has no cycle.
$G^{\prime}=\left(\mathcal{N}, \mathcal{A}^{\prime}\right)$ with $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ is a (spanning) subgraph of G. A graph is a tree if it is connected and acyclic. A spanning subgraph of G that is itself a tree is called a spanning tree of G.

For $j \in \mathcal{N}$, the outdegree of j is $|\{k \in \mathcal{N}:(j, k) \in \mathcal{A}\}|$ and indegree of j is $|\{i \in \mathcal{N}:(i, j) \in \mathcal{A}\}|$. The degree is the sum of these.

A network is a directed graph G together with additional data associated to the nodes and arcs. We will consider a vector b indexed by the nodes (b_{i} is the net supply at node i) and a vector c of costs (and possibly u of capacities) indexed by $\mathcal{A}\left(c_{i j}\right.$ is the cost of arc $\left.(i, j)\right)$.

Let $\mathbb{R}^{\mathcal{A}}:=\left\{w=\left(w_{i j}\right)_{(i, j) \in \mathcal{A}}\right.$, all $\left.w_{i j} \in \mathbb{R}\right\}$ (this can also be thought of as all functions from \mathcal{A} to $\mathbb{R})$. So $c, u \in \mathbf{R}^{\mathcal{A}}, b \in \mathbb{R}^{\mathcal{N}}\left(=\mathbb{R}^{n}\right.$ if $\left.\mathcal{N}=\{1,2 \ldots, n\}\right)$.

A feasible flow is a vector $x \in \mathbf{R}^{\mathcal{A}}$ satisfying

$$
\sum_{k:(j, k) \in \mathcal{A}} x_{j k}-\sum_{i:(i, j) \in \mathcal{A}} x_{i j}=b_{j}
$$

for all $j \in \mathcal{N}, x \geq 0$ (or $0 \leq x \leq u$) (flow conservation at node j).
$j \in \mathcal{N}$ is a source if $b_{j}>0$, a sink if $b_{j}<0$, and a transshipment node if $b_{j}=0$. We want a feasible flow with minimal cost

$$
c^{T} x=\sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j}
$$

Associated with G is its node-arc incidence matrix A with rows indexed by \mathcal{N} and columns by \mathcal{A} with

$$
a_{i,(j, k)}=\left\{\begin{array}{rll}
0, & \text { if } \quad i \notin\{j, k\} \\
+1, & \text { if } \quad i=j \neq k \\
-1, & \text { if } \quad i=k \neq j
\end{array}\right.
$$

If G has n nodes and m arcs, A is $n \times m$, and each column has 2 nonzeroes (if not a loop), $\mathrm{a}+1$ at its tail row and $\mathrm{a}-1$ at its head row (similarly, such a matrix A defines a directed graph G). Then feasible flows are $\{x: A x=b, x \geq 0\}$.

Note: the sum of all the rows of A is the zero vector. $\operatorname{So} \operatorname{rank}(A)<n=$ the number of rows, and also $\sum_{j \in \mathcal{N}} b_{j}=0$ is a necessary condition for the existence of a feasible flow. Henceforth, assume $\sum_{j \in \mathcal{N}} b_{j}=0$.

Examples

a) Shortest path.

Set $b_{j}=\left\{\begin{aligned}+1, & \text { at the initial node } \\ -1, & \text { at the final node } \\ 0, & \text { elsewhere. }\end{aligned}\right.$
b) Max flow.

Try to maximize the flow from source s to a sink t, with capacity restrictions.
The max flow problem can be reformulated as a network flow problem, by adding the arc (t, s) with a cost $c_{t s}=-1$ and putting cost 0 on all other arcs, with $b_{i}=0$ for all i and upper bounds equal to the capacity on all arcs except (t, s).
c) Transportation problem.

$$
\begin{gathered}
\mathcal{N}=\left\{1,2, . ., m, 1^{\prime}, 2^{\prime}, . ., n^{\prime}\right\} \\
\mathcal{A}=\left\{\left(i, j^{\prime}\right): 1 \leq i \leq m, 1 \leq j \leq n\right\}, G \text { is bipartite }, \\
b_{i}=s_{i}>0,1 \leq i \leq m, \\
b_{j}=-d_{j}<0,1 \leq j \leq n .
\end{gathered}
$$

We want $\sum_{i=1}^{m} s_{i}=\sum_{j=1}^{n} d_{j}$. If $m=n$ and all s_{i} 's, d_{j} 's are equal to 1 , this is the assignment problem. If we have a transportation problem where the total flow out of node i is at most s_{i} and the total flow into node j^{\prime} is at least d_{j}, where the total supply exceeds the total demand and all costs $c_{i j}$ are nonnegative, we can make this into a regular transportation problem by introducing a dummy demand of $d_{0}=\sum_{i=1}^{m} s_{i}-\sum_{j=1}^{n} d_{j}$.

Figure 1: A directed graph.
$1,(1,2), 2,(2,4), 4$ is a path from 1 to 4.
$1,(1,2), 2,(2,4), 4,(4,1), 1$ is a directed cycle; so is $5,(5,5), 5$ using the loop (5,5).
$1,(1,2), 2,(2,4), 4,(3,4), 3,(3,1), 1$ is a not directed cycle.
$(3,4)$ is a reverse arc.

Figure 2: A spanning tree.

Figure 3: A network corresponding to this directed graph with the loop omitted; a feasible flow is shown.

Figure 4: A directed graph corresponding to a transportation problem with m suppliers and n consumers. If the total demand is less than total supply, then we can create a dummy sink 0^{\prime} to absorb the difference between the two. The transportation costs for the units sent to 0^{\prime} should be set to zero. Using the same argument, we can deal with network problems with inequalities where the total demand is less than the total supply.

