
Mathematical Programming Lecture 16

OR 630 Fall 2005 October 20, 2005

Notes by Arijit Chakrabarty

Dual Simplex Algorithm concluded and Extensions to the

simplex method

We are not going to completely prove validity of the Dual Simplex Algorithm, but state three
key theorems analogous to those for primal simplex method.
Assume (P ) is a standard form problem, B is a basis matrix corresponding to basic indices β

and non-basic indices ν.

Let x̄ =

[

x̄B

x̄N

]

:=

[

b̄

0

]

with b̄ := B−1b

and ȳ := B−T cB

be corresponding basic solutions to (P ) and (D).
Assume that ȳ is feasible in (D), so

c̄ = c − AT ȳ ≥ 0

(i.e., B is dual feasible. x̄ is not necessarily feasible in (P )).

Theorem 1 With the hypotheses above, if b̄ ≥ 0, then x̄ is feasible, and x̄ and ȳ are optimal
for (P ) and (D) respectively.

Theorem 2 With the hypotheses above, suppose b̄p < 0, and xk is the p − th basic variable.
Compute z = B−T ep. If aT

j z ≥ 0 for all j ∈ ν, then (D) is unbounded and (P ) is infeasible and
−z is a certificate of infeasibility of (P ).

Theorem 3 With the hypotheses above, suppose b̄p < 0 and z = B−T ep has aT
j z < 0 for some

j ∈ ν. Then let q ∈ ν satisfy

aT
q z < 0

and
c̄q

−aT
q z

= min{
c̄j

−aT
j z

: j ∈ ν with aT
j z < 0}

Then, if we replace the p − th basic index by q, the resulting matrix B+ is non-singular, the
corresponding solution ȳ+ is feasible in (D), and

bT ȳ+ = bT ȳ +
b̄pc̄q

aT
q z

≥ bT ȳ

with strict inequality if c̄q > 0.

1



Proofs: From complementary slackness, the discussion last time and checking that c̄+ ≥ 0 if
choose q as in Theorem 3.

Remark 1 The work per iteration is comparable to that for the primal simplex algorithm.
Computing aT

j z for each j ∈ ν is equivalent to computing aT
j z (to get c̄) for each j ∈ ν.

The difference is: Primal Simplex has (n-m) comparisons to find q and ≤ m divisions in the
minimum ratio test, whereas Dual Simplex has m comparisons to find p and ≤ (n−m) divisions
in the minimum ratio test.

Remark 2 Dual degeneracy is equivalent to one or more c̄j, j ∈ ν, being zero. In the event of
no dual degeneracy, the objective function value increases at each iteration and so the algorithm
terminates finitely (since there are only finitely many basic solutions).

Remark 3 If we employ the least-index rule to choose the leaving variable xk and the entering
variable xq, then we get finite termination even in the presence of dual degeneracy.

Simplex algorithm for problems not in standard form

Note in this context that commercial software accepts problems in any LP form.

0.1 Free variables simplex method

(P )

minx cT x

Ax = b,

xj free, j ∈ φ

xj ≥ 0, j ∈ γ

(D)
maxy bT y

aT
j y = cj, j ∈ φ

aT
j y ≤ cj, j ∈ γ

Again we have a basis matrix B, and corresponding primal solution

x̄ =

[

x̄B

x̄N

]

=

[

b̄

0

]

,

b̄ = B−1b.

It is a basic feasible solution if
x̄j ≥ 0, j ∈ β ∩ γ.

Is it optimal? Compute ȳ = B−T b and consider c̄ = c − AT ȳ. We are optimal (look at (D)) if

c̄j = 0, j ∈ ν ∩ φ,

c̄j ≥ 0, j ∈ ν ∩ γ.

2



If not, if there exists j ∈ ν with c̄j < 0, increase xj as usual (choose xq). If instead, c̄j > 0 for
j ∈ ν ∩ φ, then decrease xj (choose xq).
Increase or decrease xq and see the effect on the basic variables. We need to look at negative
āiq’s if xq is decreasing. Also ignore i if the i− th basic variable is in β ∩ φ. This gives possible
unboundedness and changed rules for choosing p. Note that, once a free variable becomes basic,
it never leaves the basis.

0.2 Bounded variable simplex method

(P )
minx cT x

Ax = b.

0 ≤ x ≤ u.

Assume 0 < uj < +∞∀j. We could also deal with the more general setup l ≤ x ≤ u. The dual
problem is

(D)
maxy,z bT y − uTz

AT y − z ≤ c,

z ≥ 0.

Note that (D) is always feasible. If we write the constraints as

AT y − z + s = c,

z, s ≥ 0,

for any ȳ we can choose
s = max{0, c − AT y}

z = max{0, ATy − c}

with the “max”s taken componentwise to get a feasible solution. We try to handle the upper
bounds without increasing the number of equations or the size of the basis matrix from m to
m + n. Consider a partition of the indices into basic (β) and nonbasic (ν), and also of ν into
nonbasic at lower bound (νl) and nonbasic at upper bound (νu).
The corresponding basic solution has

x̄j = 0, j ∈ νl,

x̄j = uj, j ∈ νu,

x̄B = B−1(b − Nx̄N ).

It’s feasible if 0 ≤ x̄B ≤ uB.
Let ȳ = B−T cB and compute c̄ = c − AT ȳ. Look at c̄j, j ∈ ν. We are optimal (using comple-
mentary slackness and checking the constraints in (D)) if

c̄j ≥ 0 for j ∈ νl

(x̄j = 0 ⇒ x̄j < uj ⇒ zj = 0 ⇒ sj = c̄j), and

3



c̄j ≤ 0 for j ∈ νu

(x̄j = uj ⇒ x̄j > 0 ⇒ sj = 0 ⇒ zj = −c̄j).

Otherwise, choose xq if

{

c̄q < 0&q ∈ νl

c̄q > 0&q ∈ νu

}

to

{

increase
decrease

}

. Compute āq = B−1aq. Choose p

by examining the effects on the basic variables.
If xq is increasing, we find a limit on its increase as follows:

āiq > 0 ⇒ limited by
(x̄B)i

āiq

āiq < 0 ⇒ limited by
(uB)i − (x̄B)i

−āiq

.

Also there is a limit uq on the change in xq. This means that it can be the case that p = q, i.e.,
both entering and leaving variables are xq!! There are corresponding limits if xq is decreasing.

Bounded variables can be used to model decreasing returns to scale, or convex cost functions.
Suppose that the cost associated with a variable xj is 2 per unit for the first 10 units, and 3
per unit thereafter. The cost function is then convex and piecewise-linear. We can convert this
into a linear programming problem as follows: we use two variables, xj1 and xj2, with costs
of 2 and 3 respectively. Both variables appear in the constraints in the same way. We put an
upper bound on xj1 of 10; both variables are restricted to be nonnegative. Then the algorithm
will choose to use xj1 first, at a unit cost of 2, up to its upper bound of 10; then xj2 will be
used at a unit cost of 3. The resulting cost will exactly mirror the desired convex cost.

If instead there were increasing returns to scale (like quantity discounts, as opposed to
limited supplies from the cheap suppliers), we would want to model a piecewise-linear concave
cost like 3 per unit for the first 10 units, and 2 per unit thereafter. If we tried the same trick
as above, the algorithm would try to use the cheap variable first, and the result would not
correctly represent the concave cost.

In HW2, we saw a nice feature of minimizing concave cost functions over a polyhedron;
here we see an advantage for convex cost functions. Another important property of minimizing
a convex function over a convex set is that local minimizers are global minimizers. Overall,
convexity seems more useful than concavity: but linear objective functions are both concave
and convex, so we get all the advantages of both.

4


