
Mathematical Programming Lecture 15
OR 630 Fall 2005 October 18, 2005
Notes by Ron Dabora

1 Sensitivity Analysis (cont’d)

1.1 Case (a): Changes in c (cont’d)

Last time we considered changes in c. We considered two cases: changes in a basic cj and
changes in a non-basic cj. In addition to remarks 1 and 2 at the end of the last lecture we have
the following remark:

Remark 3 As long as ȳ remains feasible, the corresponding change in the optimal ζ̄ is 0 for
case (i) (the non-basic case) and δx̄j in case (ii) where cj ← cj + δ.

1.2 Case (b): Changes in b̄

Since B and cB remain unchanged, so does ȳ. However x̄B = B−1b does change. The case
where x̄B remains non-negative can be easily handled: say bi changes to bi + δ:

b← b + δei.

Then
x̄B ← B−1b + δB−1ei.

The basis B remains optimal basis (with adjusted x̄) as long as

B−1b + δB−1ei ≥ 0.

When (B−1ei)p ≥ 0, we can derive from this condition a lower bound on δ, and when (B−1ei)p <

0, this condition yields an upper on δ. Overall, we get an allowed range for δ which includes 0.

Remark 4

1. Note that this is not symmetric with case (a) because (P ) and (D) are not completely
symmetric. But, if the i’th constraint in (P ) was initially an inequality, we could add a
slack or a surplus variable, so we have ±ei as a column of A. If this column is also in B,
then B−1ei is some ±ep, and then we get a single lower or upper bound on δ, symmetric
to case (a).

2. Suppose that the change in bi is such that x̄B does remain feasible and hence optimal
(recall that ȳ does not change). Then ζ̄ becomes:

ζ̄new = cT
B

(

B−1b + δB−1ei

)

= ζ̄old + δȳi.

1



(Compare with Remark 3 above.) Equivalently,

ζ̄new = bT
new

ȳ = (b + δei) ȳ.

Therefore, as long as the change is small enough (so that the new x̄ remains feasible),
then ȳi measures the rate of change in the objective function as a function of bi. This is
a kind of shadow price of the i’th constraint or a marginal price. Note that if the current
optimal solution x̄ is non-degenerate (B−1b > 0), then the range of δ includes 0 in its
interior, and this marginal value is accurate for all sufficiently small changes in bi.

3. We can perform a similar analysis if b changes to b + δb̂, b̂ ∈ Rm, δ ∈ R.

4. Suppose that the changes in b are large enough so that the new x̄B has at least one negative
component: we want to re-optimize but we don’t have a basic feasible solution anymore.

1.3 Case (c): Changes in A

(i) Change in a column aj:

(i.1) Change in a non-basic aj → dealt with in case (a)(i). x̄ stays the same and if ȳ is
not feasible in the changed constraint, continue the algorithm.

(i.2) Change in a basic aj: we have a change in a column of B, so both x̄ and ȳ change.
This change is similar to the way we change B in the simplex iteration: this is a
rank-one change in B. So,

(i.2.1) Check if the new B is non-singular (the entry of B−1aj,new corresponding to the
position of aj,old in the basis has to be non-zero).

(i.2.2) If so, compute the new B−1 (using the rank-one formula). Hence, x̄ and ȳ can
be computed.

(ii) Change in a row of A:
This is also a rank-one change - change of a row of B. This can be analyzed as before: if
the new B is non-singular, we can calculate x̄ and ȳ, and re-optimize if we get a feasible
x̄ but infeasible ȳ as before.

2 Reoptimization

However, what if we get a basic but not feasible primal solution x̄ (due to changes in A or b)?

A) Default Method:
Suppose for example we have changed aj to ãj, j ∈ β and changing aj to ãj in B makes
it singular. Then, consider

min xj
∑

i6=j

aixi + ajxj + ãjx̃j = b

2



x ≥ 0

x̃j ≥ 0

Now, solve this as a phase I problem (where the old xj is now an artificial variable),
starting with the current basic feasible solution, and when xj = 0 switch to the phase II
problem as in the usual phase I - phase II technique.

B) Dual Simplex Algorithm:
Consider a case where the new x̄ is not feasible but the new ȳ is still feasible (e.g., too
big a change in just b, as in part 4 of Remark 4 above).
Recall that in the primal simplex algorithm:

• x̄ is feasible.

• ȳ is infeasible until termination (since one or more reduced costs remain negative).

• We always have complementary slackness.

Now we have:

• x̄ is infeasible.

• ȳ is feasible.

• Complementary slackness.

⇒ We should switch to a Dual Simplex Algorithm.

In general, we could apply the “usual” simplex method to the dual problem starting with
ȳ. But this problem is not in standard form, and putting it in standard form is awkward
for finding an initial basis matrix and its inverse. We will try to simulate this method
while keeping “primal” quantities like B−1. We can write the primal problem as

min
x

cT
BxB + cT

NxN

(P ) BxB + NxN = b

xB , xN ≥ 0,

with current solution : x̄B = B−1b, x̄N = 0. Its dual can be written

max
y

bT y

(D) BT y ≤ cB

NT y ≤ cN ,

with current solution ȳ = B−T cB satisfying BT ȳ = cB, NT ȳ ≤ cN .

To move, we relax some constraint indexed by j ∈ β in (D). The order of operations has
changed compared to the original method: in the dual simplex algorithm we first choose
a j ∈ β to take out and then figure out which l ∈ ν we bring in. In the primal simplex

3



algorithm we first choose l ∈ ν to bring in and then choose which j ∈ β leaves.

• Which j ∈ β should we remove? Which constraint (say the i’th) shall we relax?
If we relax the i’th constraint, it is equivalent to moving to a new ȳ with BT ynew = cB−δei:
Let

ynew = B−T cB − δB−T ei = ȳ − δB−T ei,

and choose i such that bT ynew > bT ȳ for positive δ, i.e., bT B−T ei < 0.
This implies that (B−1b)i < 0 ⇒ we’re looking for infeasibility of the primal (in the
original method we looked for infeasibility of the dual). Hence we get
Dual Simplex Criteria for Leaving Variable: Choose some k ∈ β with xk the p’th basic
variable such that (B−1b)p < 0 (cf. choose q with c̄q < 0).
Now we move as far as possible so we remain feasible.
BT ynew ≤ cB ⇒ all the components indexed by j ∈ β except for the k’th remain satisfied
with equality. The k’th component is reducing – so we’re o.k. Also, we require N T ynew ≤

cN , so we want
NT

(

B−T cB − δB−T ep

)

≤ cN ,

for the maximum possible δ, i.e.,

−δNT B−T ep ≤ cN −NT ȳ = c̄N .

Consider now aT
j

(

B−T ep

)

: if this is positive, we do not need to worry: δ can be as large
as we wish. Thus we choose j ∈ ν to go into β by considering all j’s with

aT
j

(

B−T ep

)

= eT
p

(

B−1aj

)

= eT
p āj = āpj < 0,

and choosing q ∈ ν with aT
q B−T ep < 0 and

c̄q

−aT
q B−T ep

= min

{

c̄j

−aT
j B−T ep

: j ∈ ν, aT
j B−T ep < 0

}

.

This is the Dual Simplex Criterion for the Entering Variable.
The quantity above is the most we can move ȳ in the direction −B−T ep.
Then to perform the iteration we make xq basic in place of the current pth basic variable
xk.
• What if aT

j B−T ep ≥ 0 for all j ∈ ν?
Then we can move ȳ as far as we want in direction −B−T ep, and bT y → +∞, so (D) is
unbounded and (P ) is infeasible (we can use ȳ = −B−T ep to show that (P ) is infeasible
by the Farkas lemma).

4


