1 Least-index Rule

Least-index Rule: At each iteration, choose as entering variable x_j where x_j is eligible to enter the basis and j is minimal; choose to leave the basis the ith basic variable x_j which is eligible to leave the basis ($\bar{a}_{iq} > 0$ and minimum ratio test candidate) and has j minimal.

Theorem 1 (R.G. Bland) The simplex method with the **Least-index Rule** terminates in a finite number of iterations.

Proof: By contradiction. If the Least-index Rule fails to terminate, it leads to a cycle of degenerate pivots. Say the sequence of sets of basic indices is

$$\beta_0, \beta_1, ..., \beta_h, ..., \beta_l, \beta_h, ..., \beta_l, ...$$

where $\beta_h, ..., \beta_l$ is a cycle of degenerate pivots. In this cycle of pivots, the objective function is staying constant and all variables keep the same value.

Consider the set of all indices j such that j is in some β_k , $h \leq k \leq l$, and j is <u>not</u> in some β_i , $h \leq i \leq l$. Call these <u>fickle</u>. These variables are always zero in the cycle. Let t be the largest fickle index. It leaves the basis at some iteration, say the <u>ith</u>, and re-enters at some other iteration, say the <u>kth</u>.

Consider first the *i*th iteration, when x_t leaves the basis. Say x_s enters the basis (s is fickle, so s < t). Consider \bar{c} , the reduced costs at iteration i and d, the direction of "movement." It follows that

$$\bar{c}_s < 0$$
 (x_s enters),
 $d = \begin{pmatrix} -\bar{a}_s \\ e_s \end{pmatrix} \leftarrow \text{basic variables}$.

Then,

 $d_t < 0$ ($\bar{a}_{ps} > 0$, if x_t is the pth basic variable, because it is eligible to leave the basis), $d_s = 1 > 0$,

 $d_j \ge 0$ if $j \in \beta_i$, and j is fickle (would have chosen j if $d_j < 0$; j not chosen but j < t),

 $d_j = ??$ if $j \in \beta_i$ and j not fickle,

 $d_j = 0$ if $j \notin \beta_i$ and $j \neq s$.

Finally, Ad = 0, thus, $d \in \mathcal{N}(A)$.

Next consider β_k , where x_t comes back into the basis. Let \hat{c} be the vector of reduced costs of this iteration. Then

$$\hat{c} = c - A^T \hat{y}$$
, some \hat{y}

and

$$\bar{c} = c - A^T \bar{y}$$
, some \bar{y} .

Define,

$$\tilde{c} = \hat{c} - \bar{c} = A^T(\bar{y} - \hat{y}),$$

SO

$$\tilde{c} \in \mathcal{R}(A^T) = (\mathcal{N}(A))^{\perp}.$$

Then,

$$\begin{split} \tilde{c}_t &= \hat{c}_t - \bar{c}_t < 0 & \qquad (\hat{c}_t \geq 0 \text{ because } t \text{ chosen and } \bar{c}_t = 0), \\ \tilde{c}_s &= \hat{c}_s - \bar{c}_s > 0 & \qquad (\hat{c}_s \geq 0 \text{ because } x_s \text{ either basic or not chosen over } x_t), \\ \tilde{c}_j &= \hat{c}_j - \bar{c}_j \geq 0 & \qquad \text{if } j \in \beta_i \text{ and fickle} & \qquad (\hat{c}_j \geq 0 \text{ for same reason as } \hat{c}_s; \bar{c}_j = 0), \\ \tilde{c}_j &= \hat{c}_j - \bar{c}_j = 0 & \qquad \text{if } j \in \beta_i \text{ and not fickle,} \\ \tilde{c}_j &= ?? & \qquad \text{if } j \notin \beta_i \text{ and } j \neq s. \end{split}$$

But then

$$0 = \tilde{c}^T d = \tilde{c}_t d_t + \tilde{c}_s d_s + \sum_{j \in \beta_i, j \text{ fickle}} \tilde{c}_j d_j + \sum_{j \in \beta_i, j \text{ not fickle}} \tilde{c}_j d_j + \sum_{j \notin \beta_i, j \neq s} \tilde{c}_j d_j > 0$$

which is a contradiction.

Since the simplex method (with appropriate pivot rules) terminates finitely, we can use it as a constructive proof technique to show

- If A has rank m, then if (P) has a feasible solution, it has a basic feasible solution;
- Strong duality; and
- the Farkas Lemma.

2 Sensitivity Analysis

The simplex method generate an optimal solution to (P)

$$\min \quad c^T x
 Ax = b,
 x \ge 0,$$

and its dual. Then \bar{x}, \bar{y} and $\bar{\zeta}$ are optimal for the problem given by data (A, b, c), but clearly depend on the data. **Sensitivity** or **post-optimality** analysis asks how (or if) \bar{x}, \bar{y} , and $\bar{\zeta}$ change if some elements of the data change.

Key Idea: If we can construct feasible primal and dual solutions satisfying complementary slackness conditions, then they must be optimal!

Case:

- (a) Change one component of c; then \bar{x} is still a feasible primal solution.
 - (i) Change c_j , j nonbasic.

Then c_B unchanged so $\bar{y} = B^{-T}c_B$ is unchanged. Our only concern is the feasibility of \bar{y} , i.e., the feasibility of \bar{y} in the jth constraint. So the old \bar{x} and \bar{y} remain optimal as long as new $c_j \geq a_j^T \bar{y}$ (i.e. new $\bar{c}_j \geq 0$). Note: even if a_j also changes, still optimal as long as (new $c_j) \geq (\text{new } a_j)^T \bar{y}$.

(ii) Change c_j , $j \in \beta$, e.g., $c_j \leftarrow c_j + \delta$. Say x_j is the *i*th basic variable.

Then $c_B \leftarrow c_B + \delta e_i$, and $\bar{y} \leftarrow B^{-T}(c_B + \delta e_i) = \bar{y} + \delta B^{-T}e_i$. This \bar{y} still satisfies complementary slackness, but have to check feasibility, i.e., check $a_k^T \bar{y} + \delta(a_k^T B^{-T} e_i) \leq c_k$ for $k \in \nu$. For each k with $a_k^T(B^{-T}e_i) > 0$, get an upper bound on δ , and for each k with $a_k^T(B^{-T}e_i) < 0$, get a lower bound on δ . Thus, get the range for δ (including 0). Thus, get range for c_j (including its nominal value). Hence \bar{x} and the <u>adjusted</u> \bar{y} remain optimal as long as c_j varies within this range.

Remark 1 Consider more general changes, e.g., $c \leftarrow c + \delta \hat{c}$ (parametric analysis). The analysis is the same as in case (a)(ii).

Remark 2 If in any subcase, we make a larger than permitted change, then some reduced cost becomes negative, but \bar{x} is still a primal basic feasible solution, so can continue applying the simplex method from here (reoptimization).

Remark 3 In case (i), $\bar{\zeta}$ doesn't change, while in case (ii), it increases by $\delta \bar{x}_j$ as expected, with both cases subject to \bar{x} remaining optimal.