
Mathematical Programming Lecture 14

OR 630 Fall 2005 October 13, 2005

Notes by Mingbo Zhao

1 Least-index Rule

Least-index Rule: At each iteration, choose as entering variable xj where xj is eligible to
enter the basis and j is minimal; choose to leave the basis the ith basic variable xj which is
eligible to leave the basis (āiq > 0 and minimum ratio test candidate) and has j minimal.

Theorem 1 (R.G. Bland) The simplex method with the Least-index Rule terminates in a
finite number of iterations.

Proof: By contradiction. If the Least-index Rule fails to terminate, it leads to a cycle of
degenerate pivots. Say the sequence of sets of basic indices is

β0, β1, ..., βh, ..., βl, βh, ..., βl, ...

where βh, ..., βl is a cycle of degenerate pivots. In this cycle of pivots, the objective function is
staying constant and all variables keep the same value.

Consider the set of all indices j such that j is in some βk, h ≤ k ≤ l, and j is not in some
βi, h ≤ i ≤ l. Call these fickle. These variables are always zero in the cycle. Let t be the
largest fickle index. It leaves the basis at some iteration, say the ith, and re-enters at some
other iteration, say the kth.

Consider first the ith iteration, when xt leaves the basis. Say xs enters the basis (s is fickle,
so s < t). Consider c̄, the reduced costs at iteration i and d, the direction of “movement.” It
follows that

c̄s < 0 (xs enters),

d =

(

−ās

es

)

← basic variables
← nonbasic variables

.

Then,

dt < 0 (āps > 0, if xt is the pth basic variable, because it is eligible to leave the basis),

ds = 1 > 0,

dj ≥ 0 if j ∈ βi, and j is fickle (would have chosen j if dj < 0; j not chosen but j < t),

dj =?? if j ∈ βi and j not fickle,

dj = 0 if j 6∈ βi and j 6= s.

Finally, Ad = 0, thus, d ∈ N (A).
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Next consider βk, where xt comes back into the basis. Let ĉ be the vector of reduced costs
of this iteration. Then

ĉ = c− AT ŷ, some ŷ

and
c̄ = c− AT ȳ, some ȳ.

Define,
c̃ = ĉ− c̄ = AT (ȳ − ŷ),

so
c̃ ∈ R(AT ) = (N (A))⊥.

Then,

c̃t = ĉt − c̄t < 0 (ĉt ≥ 0 because t chosen and c̄t = 0),

c̃s = ĉs − c̄s > 0 (ĉs ≥ 0 because xs either basic or not chosen over xt),

c̃j = ĉj − c̄j ≥ 0 if j ∈ βi and fickle (ĉj ≥ 0 for same reason as ĉs; c̄j = 0),

c̃j = ĉj − c̄j = 0 if j ∈ βi and not fickle,

c̃j =?? if j 6∈ βi and j 6= s.

But then

0 = c̃T d = c̃tdt + c̃sds +
∑

j∈βi,j fickle

c̃jdj +
∑

j∈βi,j not fickle

c̃jdj +
∑

j 6∈βi,j 6=s

c̃jdj > 0

which is a contradiction. �

Since the simplex method (with appropriate pivot rules) terminates finitely, we can use it as a
constructive proof technique to show

• If A has rank m, then if (P ) has a feasible solution, it has a basic feasible solution;

• Strong duality; and

• the Farkas Lemma.

2 Sensitivity Analysis

The simplex method generate an optimal solution to (P )

min cT x

Ax = b,

x ≥ 0,
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and its dual. Then x̄, ȳ and ζ̄ are optimal for the problem given by data (A, b, c), but clearly
depend on the data. Sensitivity or post-optimality analysis asks how (or if) x̄, ȳ, and ζ̄

change if some elements of the data change.

Key Idea: If we can construct feasible primal and dual solutions satisfying complementary
slackness conditions, then they must be optimal!

Case:

(a) Change one component of c; then x̄ is still a feasible primal solution.

(i) Change cj, j nonbasic.
Then cB unchanged so ȳ = B−T cB is unchanged. Our only concern is the feasibility of ȳ,

i.e., the feasibility of ȳ in the jth constraint. So the old x̄ and ȳ remain optimal as long as
new cj ≥ aT

j ȳ (i.e. new c̄j ≥ 0). Note: even if aj also changes, still optimal as long as (new
cj)≥(new aj )T ȳ.

(ii) Change cj, j ∈ β, e.g., cj ← cj + δ. Say xj is the ith basic variable.
Then cB ← cB +δei, and ȳ ← B−T (cB +δei) = ȳ+δB−T ei. This ȳ still satisfies complemen-

tary slackness, but have to check feasibility, i.e., check aT
k ȳ + δ(aT

k B−T ei) ≤ ck for k ∈ ν. For
each k with aT

k (B−T ei) > 0, get an upper bound on δ, and for each k with aT
k (B−T ei) < 0, get

a lower bound on δ. Thus, get the range for δ (including 0). Thus, get range for cj (including
its nominal value). Hence x̄ and the adjusted ȳ remain optimal as long as cj varies within this
range.

Remark 1 Consider more general changes, e.g., c← c+δĉ (parametric analysis). The analysis
is the same as in case (a)(ii).

Remark 2 If in any subcase, we make a larger than permitted change, then some reduced cost
becomes negative, but x̄ is still a primal basic feasible solution, so can continue applying the
simplex method from here (reoptimization).

Remark 3 In case (i), ζ̄ doesn’t change, while in case (ii), it increases by δx̄j as expected,
with both cases subject to x̄ remaining optimal.
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