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1 Implementation (continued)

We noted last time that

By = B+ (a;— Bey)el
= B(I+ (dg — ep)ey).

Now, we want to find the inverse of B,. Notice that (aq— Be,)e, has rank one and therefore
B, is a rank-one modification of B. We can use the following proposition to find B!

Proposition 1 (Rank-One Modification) Let M € R™™ be nonsingular and u, v € R™. Then
M + uvTis nonsingular if and only if 1 + v M~ u is nonzero, in which case
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M +uv? is nonsingular exactly when the LHS above is, which holds if and only if the RHS
is, which holds if and only if 1 + o7 M~'u # 0. Assume this holds.

Taking the inverse of both sides, we get
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Note that we don’t care about the lower-left block matrix of the LHS, since we are only
interested in finding the inverse of M + uv?.

So,
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and we get what we want. O

The equation (1) is often called the “Sherman-Morrison formula,” but there are earlier pa-
pers deriving it. There is a nice generalization of this formula, sometimes called the “Sherman-
Morrison-Woodbury formula,” which goes as follows:

Remark 1 (Sherman-Morrison-Woodbury formula) If M € R™™ and U,V € R*™™(k < m),
then

M+UVT =M+ Z?Zl ujv;fp is nonsingular if and only if I + VT M~U is, in which case

(M+UVH =Mt~ MU+ VMU VIMTE

Above is the formula for the inverse of a rank-k modification of M. The proof of this is similar
to the one for the rank-one modification.

Now, back to our case. By Proposition 1, the rank-one modification of B: By = B + (a, —
Bey)e] is nonsingular if and only if 1+ el B~ (a, — Be,) = 1+ €] (a, — €,) = Gy, is nonzero,

and then - T B .
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Recall the 5-step (primal) simplex method.

Ways To Update in Step 5

1. Keep and update A, b, ¢, and (:

e A=B1A,

e b=DB"1,

e c=c— ATB ¢cp,
o ( =ckB .

This is all the information in the equations:
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or all the information in the tableau:

Basic Variable | ( | x | RHS
- 1] - | ¢
B 0 A b

To update this tableau,



(a) Update A and b : Pre-multiply A and b by the elementary matrix inverse, E
e Divide the p row by Gpy;
e Multiply the new p™ row by —a,, and add to the i*" row, for i = 1,...,m.
(b) Update ¢ and (:

e Add ¢, times the new p** row of A,b to the old —¢, ¢ to get the new values.

Now, let’s talk about the number of arithmetic operations.

Assumption 1

o A is an m x n matriz and each of its columns has a fraction o of nonzeroes. (Think
of m = 10,000, n = 100, 000, = 1073.)

e B7! and A are assumed to have density (fraction of nonzeroes) 3 and 3 > «.. (Think

of 3=1072.)

Then, work involved:

Step 1: None.

Step 2: None.

Step 3: None. (No work for comparisons.)

Step 4: fm (from computing ;qu for a;, > 0).

Step 5: 20m(n —m) + O(n) ( 26m(n —m) from (a) and O(n) from (b): the factor 2
comes from multiplications and additions).

Using the above example (m = 10,000 , n = 100,000, o = 1073, 8 = 1072), we have
about 2 x 107 operations needing to be done in each iteration.

Above is the original simplex method.

. Keep and update B!, , b, and .
Work involved:

Step 1: Compute ¢ to check optimality: ¢; = ¢; — a;—Fg for j € v.
So, we use 2am(n — m) operations in this step.

Step 2: None.

Step 3: Compute a, to check unboundedness: a, = B™'a,.
So, we use 2am? operations (note that a, has only am nonzeroes, so this is the number
of columns of B~ we need to combine).

Step 4: fm ( from computing ;’—l for a;, > 0).
iq



Step 5: Update

B! 28m? (like updating A, but only m columns).
b 206m.

R o(1).

g+ . 2m

Below shows how we obtain 2m operations used in updating ¥ .
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The work involved here is 2m (multiplications/additions).

Note: This is almost the same as updating ¢ . Indeed, if the original problem had slacks
with 0 cost, their corresponding reduced costs would be : 0 — I7y = —7.

The total work is:
2amn, + 23m? +0(m).

- N———
Computing ¢ and @ Updating B~

From our earlier example (m = 10,000 , n = 100,000, a = 1073, 3 = 107%), we have
approximately 2 x 10642 x 10% = 4 x 10° operations needing to be done in each iteration.

Above is called the “Revised Simplex Method.” This method requires the minimum
amount of updates in order to perform each simplex iteration.

. The third possibility is similar to the second one. The only difference is that it also
updates ¢. That is, this method has no work involved in Step 1, but it has additional



work in updating ¢ in Step 5.
C
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So, for each j,
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(aT(B_Tep)) for j e v.

Computing a?(B‘Tep) involves 2aim operations (multiplications/additions). Hence, the

work involved in updating ¢ is 2am(n — m) again as in the previous method.

Note that, in order to do the simplex algorithm, we do not need to update ¢; for all j € v,
since we just want to choose only one negative ¢; to determine the entering-basis variable. This
can reduce the number of arithmetic operations.

Factorization
An efficient way to find B! is to compute it from a factorization of B. Here are two possible
factorizations we can use.

1. LU Factorization: B = LU where L is a lower triangular matrix and U is an upper
triangular matrix.

2. QR Factorization: B = QR where () is an orthogonal matrix and R is an upper triangular
matrix.

The LU factorization is better to use here, since it preserves the sparsity of B whereas the
QR factorization can destroy the sparsity of B. We can update L and U in each iteration by
changing only some entries of them.

2 Finite Termination in the Presence of Degeneracy

In order to have finite termination in the case of degeneracy, we need specialized pivot rules.
On the course homepage, there is an example exhibiting cycling using a very natural pivot rule.

There are rules just restricting the choice of p (the index of the variable leaving the basis),
but we will discuss one that restricts both p and ¢ (the index of the variable entering the basis).
(So we have to “mind our ps and ¢gs.”) This is the so-called Least-Index Rule (Bland, ’77).

Least-index rule
At each iteration, call a nonbasic variable eligible to enter the basis if its reduced cost is neg-
ative. Choose the eligible variable z, with least index ¢. Call a basis variable z; eligible to leave

the basis if it is the i basic variable, @;, > 0, and g’— = minh{g’Th ch=1,...,m,ap > 0}.
1q q
Choose the eligible variable with least index j to leave the basis.

Next time we will see the proof that this rule leads to finite termination.



