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Notes by Jie Chen

Today, we will go on discussing the simplex method. We still have some unfinished business
to take care of as follows:

• Getting an initial basic feasible solution;

• Implementation;

• Finite termination (related to pivot rules).

We will analyze the first problem and a bit about the second one.
The LP problem in standard form is:

minx cT x

(P ) Ax = b,

x ≥ 0.

First problem: Obtaining an initial basic feasible solution.

1. Suppose the initial problem had inequality constraints: Ax ≤ b, x ≥ 0, so we add slack
variables to get

Ax + Is = b,

x ≥ 0,
s ≥ 0.

If b ≥ 0, we can choose B = I, so B−1b = b ≥ 0. This is the all-slack basis. Similarly if
the initial formulation is Ax ≥ b, x ≥ 0 and b ≤ 0, then we can do the same with surplus
variables.

2. Suppose the initial formulation had constraints Ax ≥ b, x ≥ 0. Suppose some component
of b is positive, but A has a column that is positive. Subtract surplus variables to get

Ax − It = b,

x ≥ 0,
t ≥ 0.

Make all surplus variables basic, so the basis is −I and we get −Ax + It = −b. This is a
basic solution but not feasible. Choose xq to become basic, where aq > 0. Then āq < 0.
Now let

xq =
bp

apq

= max
i

{
bi

aiq

: i = 1, 2, . . . , m},

i.e., increase xq until the last ti hits zero, say tp. Then make xq basic and tp nonbasic,
and you have a basic feasible solution.
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3. General case: attack the feasibibility problem as an optimization problem by constructing
an artificial problem.

(a) Add slack/surplus variables to get the problem into the standard form (P).

(b) Multiply rows with negative bis by −1, so the RHS (right hand side) becomes non-
negative. Choose

S = Diag(±1,±1, . . . ,±1) ∈ <m×m

so that Sb ≥ 0 and work with SAx = Sb.

(c) Add an artificial variable zi to each row to get SAx + Iz = Sb where x ≥ 0, z ≥ 0.
Note: If the ith row has a suitable slack/surplus variables, we do not need zi.

(d) Solve the optimization problem (with e = (1, 1, . . . , 1)T ):

minx,z ω = eT z

SAx + Iz = Sb,

x ≥ 0,
z ≥ 0,

called the Phase I problem, by the simplex method starting with the initial basis
I corresponding to all the artificial variables. The Phase I problem is feasible and
bounded, so it has an optimal solution. Reach an optimal basic feasible solution to
this problem.

i. The optimal value is positive. Then the original problem (P) is infeasible. Find
a certificate of this infeasibility as follows: We have an optimal dual solution,
say ỹ, to the Phase I problem, so

(SA)T ỹ ≤ 0,
Iỹ ≤ e,

(Sb)T ỹ > 0.

Then y = ST ỹ satisfies
AT y ≤ 0,
bT y > 0,

which shows by the Farkas Lemma that (P) is infeasible.

ii. The optimal value is zero, and all the artificial variables are nonbasic. Then, the
current basic feasible solution (after eliminating the artificial variables) is also
a basic feasible solution to the original problem (P) (and has basis B instead of
SB, so it’s easy to get B−1). Then solve the original problem (now called the
Phase II problem) from this initial basic feasible solution.

iii. The optimal value is zero, but one or more artificial variables are still basic (at
degenerate level zero). Consider each basic zi in turn. If zi is the pth basic
variable, the current equation p expresses zi in terms of the nonbasic variables.
If any (eT

p B−1)aj = (B−T ep)
T aj is nonzero, we can make xj basic instead of
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zi (at level 0), and can proceed. If all these coefficients are zero, then the pth
updated equation is something like zi −

∑

h=i

λhzh = 0. So

(SAx − Sb)i − Σi6=hλh(SAx − Sb)h ≡ 0.

This means that the original equation i is a linear combination of the remaining
equations in Ax = b, so we can eliminate it. (This is how we discover and deal
with the case that rank(A)< m.) Then eliminate row p and variable zi, and the
original equation i. So eliminate the pth row and ith column of B−1 to get the
new basis inverse. For example, if p = i = m, we get

B =

[
Q 0
· · · 1

]

=⇒ B−1 =

[
Q−1 0
· · · 1

]

.

Second problem: Implementation.
We need an efficient way to update quantities when we move from one basic feasible solution

to the next. The key is the basis inverse: how can we update B−1?
Recall,

B+ =

pth[
... aq

...

]

= BEp = B

pth













1 ā1q

. . . ā2q 0

1
...

āpq

āp+1,q 1

0
...

. . .

āmq 1















.

So,

B−1
+ = E−1

p B−1 =

pth















1 − ā1q

āpq

. . . −
ā2q

āpq

0

1
...
1

āpq

− āp+1,q

āpq

1

0
...

. . .

− āmq

āpq

1

















B−1.

This takes O(m2) time to update. Now, we want a clean simple way to deal with elementary
(Ep) matrices and corresponding basis changes.
Key: rank-one update

Ep = I + (āq − ep)e
T
p .

︸ ︷︷ ︸

rank−one matrix
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Here, ep =

pth
[

0 · · · 0 1 0 · · · 0
]T

. And we should notice that uT v is an inner product
and hence a number, while uvT is an outer product and hence an m × m matrix. Similarly,
B+ = B + (āq − Bep)e

T
p

︸ ︷︷ ︸

rank−one modification

.

Next time: If M is nonsingular, u,v are vectors, is M + uvT nonsingular? and if so, what is
its inverse?

Here are some references for the material we have been discussing (and will soon discuss):

For Dantzig’s column geometry: Section 3.6 of Bertsimas-Tsitsiklis.
For a discussion of the edge-following interpretation of the simplex method and its discussion
by Fourier in the 1820s (with a translation of Fourier’s description): Geometric Interpretation
of the Simplex Method in Chapter 17 of Chvátal.
For initialization: Section 3.5 of Bertsimas-Tsitsiklis and the sections Initialization in Chapter
3 and The Two-Phase Simplex Method in Chapter 8 in Chvátal.
For implementation: Section 3.3 of Bertsimas-Tsitsiklis and the section Eta Factorization of
the Basis and Chapter 24 (for triangular factorizations) in Chvátal.
For finite termination: Section 3.4 of Bertsimas-Tsitsiklis and the section Termination: Cycling
in Chapter 3 of Chvátal.
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