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Today we will start talking about how to actually solve linear programming problems. The
first technique of solving linear programs was the Simplex Method developed in 1947 by George
Dantzig (1914-2005). It is based on the idea of “travelling” between the vertices of a feasible
region.

For simplicity we will work with the problem in the standard form

min, clz
Az = b, (P)
x > 0,

and we will also assume that matrix A has a full rank, and that we have a basic feasible solution
available. Later we will talk about how to deal with problems when this is not the case.

We will discuss the method in general, but we will also demonstrate the method on a specific
example:

min ¢y + Txy + Sr3

st. 2x1 + 1 + x3 —x4 = 9, (E)
r1 + 3x9 + 23 —x5 = b,
ry + T2 + 41’3 —Te = 2,
z > 0.

Let’s choose basic indices § = {4,1,6}. Note that the ordering is important here and that
it transforms into the ordering of vectors in matrix B and into all later calculations. The
non-basic indices are then v = {2,3,5}. With this base our matrices B and N are

-1 2 0 1 1 0
B = 0O 1 0 and N=13 1 -1
0 1 -1 1 4 0
Now B~!b is our basic feasible solution, so let’s calculate it:
-1 2 0 )
B! = 0 1 0 and  B'b=| 5 | >0.
0o 1 -1 3

Our next goal is to express everything in terms of the non-basic variables. In general, for all
feasible solutions we have the relationship

Ax =b = Bxp+ Nzy =b. (1)

As B is a basis, it is regular and hence we can multiply (1) by B! to obtain
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ISL’B—FB_lN‘TN:B_lb:fB, (2)

=(2)-(7)

is our current basic feasible solution. This equation tells us how the basic variables respond to
changes in the non-basic variables. Now, let’s return back to our example and compute

where

—1 2 0 1 1 0 5 1 2
B7IN = o 1 o})-|3 1 -11]=(3 1 -1
0 1 -1 1 4 0 2 -3 -1
Hence we know that
Ty 5 1 2 ) 5
T + 3 1 -1 . T3 = 5
Tg 2 =3 -1 Ty 3

Now it’s time to take a look at the objective function. Let’s denote it ( = ¢’z and write
the equality as ¢ — ¢’o = 0. Similarly as we partition A and x, we can partition the vector c
into its basic and non-basic parts. Then we can write

0=C(—chap —cyon = —ch(B™'b— B™'Nay) — chay,
or
¢ —(ey — N'B Teg)lay = 5B (3)

Back to our example. Let’s try to write equation (3) for our example, and let’s start with
C1 = 1.

-1 0 0 0 0 0
B Tcp = 2 1 1 al=lal=[1],
0 0 -1 0 0 0
7 1 3 1 0 7 3 4
en—N'BTeg)= 5|1 1 4 -1 ]|=[5]- 1= 4
0 0 -1 0 0 -1 1
So the equation (3) looks like
i) 5
(—(441).la |=(010).|5]=5
Iy 3

This equation holds for every feasible solution, so we can see that ( > 5 for any feasible
(x9; x3; T5). So, we have found the optimum.



Note that equations (2) and (3) exhibit the current BF'S and its cost, and setting (za; 3; x5) =
(0;0;0) gives us T = (B glb) and ¢ = c5B~'b = ¢'T. However, these equations also show how
rp and ( depend on zy for any feasible solution.

Specifically in our case ¢ = 5+ 4x9 + 423 + x5 and = > 0 so current solution is optimal.
Moreover, to achieve optimality we need xo = x3 = x5 = 0 so we see our optimal solution (TOB )
is unique.

Optimality Criterion
In general, as we can deduce from our example, whether the solution is optimal or not depends
on the vector cxy — NT B~ Tcp. If all of its elements are nonnegative, the current BFS is optimal
solution. If all elements are positive, the current BFS is the unique optimal solution. Let’s
denote § = (B~Tcp). Then the optimality condition is equivalent to
cj—a]TyZO for all j ew.

Note that it is the same condition as dual constraints. So what about j € 37 Let’s write
cj — a]Ty for all 7 € § — together we obtain

Cp — BTy = Cp — BT(B_TCB) = Cp — Cp = 0.

So ¥ satisfies dual constraints. Moreover, { = 25cp = bTB~Tcp = b7y, and this is the “dual
value” of 7. So, we can understand current value of 7 to be a “trial” solution to the dual
problem, which may or may not be feasible. If it happens to be feasible, we have (recall weak
duality) an optimal primal solution Z and also an optimal dual solution 7. Let’s summarize
what we have already shown into a theorem.

Theorem 1 Optimality Criterion Suppose T = (gf{) 15 a basic feasible solution correspond-
ing to the basis matriz B for (P). Let = B~ Tcg. Then if cy — NTy > 0 then T is an optimal
solution for (P) and 7 is an optimal solution to (D). Further if cy — N1y > 0 then T is the
unique optimal solution.

Remark 1 We always have such T and 5 that satisfy the complementary slackness condition,
so that anytime T; > 0 we have ajTy = ¢j. Buty may be infeasible!!!

Example continues... Let’s now try to work on our example with a different parameter

c¢1 = —1. Luckily most of our calculations are usable, so that we can express
-1 0 O 0 0
y = B_TCB = 2 1 1 —1 - —1 ’
0o 0 -1 0 0
1 3 1 0 7 -3 10
ey — NT'B Tep = 1 1 4 -1 ]=[5]-| -1 6
0 -1 O 0 0 1 -1




Our equation (3) looks like

C—(IO 6 —1) xI3 =-5 or C:—5+10$2+6SL’3—5L’5.
Ty

So, ¢ decreases as x5 increases. How much could we increase x5 to remain feasible? Remark
the formula (2) that states xp = B71b — B~ Nz, or, in our example,

Ty 5 5 1 =2 To

T - 5 - 3 1 _1 . XT3

T 3 2 =3 -1 x5
Let’s denote z, = (5;0;0;5;0;3) + a(1;0;0;2;1;1) = (5 + a;0; 0; 5 + 2a; ; 3 4+ ). As we can
see, T, is feasible for every o > 0 and value Tz, = —1-(5+a) = —5— a goes to minus infinity

as « increases. We have just found a feasible ray on which the objective function is unbounded
below, and hence our problem is unbounded below too.

Note that the key to unboundedness is the negative signs in the 3" column of the matrix B~'N,
because otherwise increasing x5 too much would necessarily result in infeasibility.

Next time we will discuss the most interesting situation, when there is neither optimal solution
nor unboundedness.



