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Notes by Dan Sheldon

1 Separating Hyperplane Theorem

Recall the statements of Weierstrass’s Theorem (without proof) and the Separating Hyperplane
Theorem from the previous lecture.

Theorem 1 (Weierstrass) A continuous real-valued function defined on a nonempty compact
set attains its minimum and mazimum.

Theorem 2 (Separating Hyperplane) Let C C R" be closed and conver. Let x € R",z ¢ C.
Then there exists 0 # a € R"™, B € R such that a*x > 8 and a2z < 8 for all z € C.

Figure 1: Illustration of proof technique

Figure 1 illustrates the proof technique. Using Weierstrass’s Theorem, we will find the point
z that minimizes the distance from z over C. However, C is not necessarily compact (it may be
unbounded) so instead we choose an arbitrary point 2 € C, and restrict ourselves to the set C
of all points in C no farther from = than Z. This set is compact, so we can apply Weierstrass’s
Theorem to find z. We let a = x — z, and choose 3 half way between o’z and a’z to get the
illustrated hyperplane. Finally, we show that any point z € C' is farther from x than z, so it is
on the correct side of the hyperplane.

Proof: If C is empty, any a and appropriate 5 work, so assume C' is nonempty. Choose
z € (C, and let )

C={z€C:|lz—z| <||Z —zl[}.
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This is the intersection of two closed sets, so it is closed. It is also bounded: if z € C’, then by
the triangle inequality, ||z|| < ||z|| + ||z — z|| < ||z|| + ||2 — z||. So C is compact. Let Z be the
minimizer on C of

f(2) = 3llz =2l = 5(2 = )" (2 - 2).

1. Note that z minimizes f over all of C. Indeed, if z € C\C, then f(2) < f(2) < f(2).
2. Let a:=x —z. Then a # 0, since z € C,x ¢ C.
3. Let 8 := 3(a"z + a”z). Then o’z > S. Indeed,

O<ala=a"(z—2)=a"z—a"z

T T
ar+a z
= adr>dz = aTa:>#=ﬂ.

4. Tt remains to show that a’z < 3 for all z € C. Consider any z € C and z) := (1 — \)zZ +
Az € C for 0 < A < 1. Since Z minimizes f over C, f(z)) > f(2), that is

HA=Nz+X e —2)" (A= Nz+ Xz —2) > 1(z—2)"(z — ).

Simplifying,
ANz—2)"(z—2)+ LNz —2|?>0
= a (z2—2)> -]z —z|]*

But this is true for all 0 < A < 1, so we take the limit as A approaches 0, and see that
al(z—2)>0,or

T T
ar+a z
afz<alz < — =f.

2 The polar of a set

Definition 1 If S C R", then its polar is S° = {z € R": 2Tz < 1, Vx € S}.

Remark 1 As an intersection of halfspaces containing 0, the polar of a set is always a closed
convex set containing 0 € R".

Theorem 3 (Bipolar) If C' is a closed convex subset of R™ with 0 € C, then
C°°:=(C°)° =C.

Proof:

e (D) If x € C, we want to show that x € C°°, i.e., that 2"z < 1 for all z € C°. But
z € C° implies 27z < 1, so this holds.



Figure 2: Illustration of the polar of a set (containing the origin)

e (C) We show this by proving that if £ ¢ C then T ¢ C°°. By the Separating Hyperplane
Theorem, there exists 0 # a € R"” and 8 € R with a”2 > 8 > o’z for all x € C. Since
0 € C, it must be the case that 5 > 0. We’ll scale a to get an inner product of 1, i.e.,
look at z =a/B #0. Then 27z > 1> 2"z forallz € C. So x € C°. But 2"z > 1, so
T ¢ C™.
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Now we're ready to prove that polytopes are polyhedra. We’'ll restrict our proof to polytopes
@ with 0 € int(Q), but it is true in general. If the interior of () is nonempty, we can just
translate () so it contains the origin. The translated polytope is a polyhedron, which we can
translate back to see that @) is a polyhedron. It is slightly harder if the interior of @) is empty.
In this case @ lies completely in some (proper) affine subspace of R". We can imagine
translating and rotating the affine subspace so it contains the origin and lines up with the
coordinate axes. Then we can “lop off” the axes corresponding to the orthogonal complement
of the affine subspace. With respect to this lower dimensional subspace, the interior of @) will
be nonempty, so our theorem will apply.

Theorem 4 If Q C R" is a polytope with 0 € int(Q), then @Q is a (bounded) polyhedron.

Proof: We know that @) = Q°°, that is ) = P° for P = Q°. Note that if
Q@ = conv{vy,...,v,}, then
P = {zeR":2"2<1,Vz € Q}
= {zeR":v/2<1,i=1,...,k}.

so P is a polyhedron. @) has 0 in its interior, so for some € > 0, all z € R" with ||z|| < € lie in
Q. If z€ P, z# 0, then

x:eieQ.
|||
Then .
1
Tr<1 = Z2<1 o= 2] < -.
||]] €



Hence P is a bounded polyhedron. By our previous result, P is a polytope, say
conv{ws,...,w;}. Then

Q:QOO:POZ{x:w?xgl’ le,l},

i.e., () is a polyhedron.

O
3 The Farkas Lemma
We now turn back to studying Linear Programs in more detail, characterizing feasibility,
infeasibility and duality. Consider the standard form problem
min ¢’z
Az = b (1)
z > 0
and its dual .
max b'y
ATy S c (2)

We'll use the Separating Hyperplane Theorem to show that the infeasibility of (1) can be
characterized using a “theorem of the alternative”.

Theorem 5 (Farkas Lemma) Ezactly one of (1) and (II) below has a feasible solution.
I. Ax =56, 22>0

II. ATy <0 b'y>0

In the case that (II) is feasible, we call a solution y that is feasible in (II) a short proof or
certificate of the infeasibility of (I). It may not be easy to find such a certificate, but it is easy
to verify that (I) is infeasible given the certificate.

Proof:

e First we show it can’t be the case that both (I) and (II) have a solution. Suppose z
solves (I) and y solves (II). Then

0<bTy=y"b=y"(Az) = (y" A)x = (ATy)"z < 0.

This is an obvious contradiction. Hence y is a short proof of the infeasibility of (I).



e Next we show that at least one has a solution. So suppose that (I) has no solution, that
is

b¢ {z=Ax:x >0}
)
The set (*) is clearly convex. It is also closed, which we’ll show later. So we can invoke

the Separating Hyperplane Theorem, and there is some 0 # y € R™, 3 € R such that
bTy > B> 2Ty for all z = Az for some z > 0.

If we let x = 0, then z = 0, and it must be the case that g > 0.

Now if we let z = ae; = (0,...,0,,0,...,0)", then z = ade; = aa;, where
A =ay,...,a,], for @« > 0. This gives us

B>aTy:anTy = afygo for all j

= ATy <o.

So we have ATy < 0, and by > B for B > 0, or bTy > 0. This means y is a solution to

(II).
Now we’ll return to showing that {z = Az € R" : x > 0} is closed.

Let z be a limit point of the set, i.e., z; — 2z, where each zy = Axy, x, > 0. Is z = Az for
some z > 07 If the z;’s converge (or have any limit point), we’re OK, just choose z as this
limit point. For each k, Ax = 2z, > 0 has a feasible solution, so it has a basic feasible
solution, say corresponding to [, vx. There are a finite number of ways to choose 5, and v,
so there must be some S, v, say, 3, v, that repeat infinitely often, and for these k£ we get

-1
Tkp = B Zky Ty = 0.
So zy, — xp, say, and then (xp;zy) gives us

Alzg;zn] = Brg = lim B(B™'z,) = limz;, = 2.



