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Let us consider standard form problems. If the feasible region is

Q = {x ∈ <n : Ax = b, x ≥ 0},

then Q is pointed because every line {x + αd : x ∈ <}, 0 6= d ∈ <n leaves the nonnegative
orthant for some α. What are the basic solutions of this system?

Assume, without loss of generality, that rank(A) = m where A ∈ <m×n. Let aT
i. , i = 1, . . . , m

be the ith row of A. The constraints, therefore, are

aT
i.x = bi, i = 1, . . . , m,

−xj ≤ 0, j = 1, . . . , n.

A basic solution x satisfies all equality constraints and satisfies n linearly independent con-
straints at equality. Let us say that the constraints that are satisfied with equality are indexed
by i = 1, . . . , m and j ∈ ν, ν ⊆ {1, 2, . . . , n} with |ν| = n − m. Let β = {1, . . . , n} \ ν. Thus,
ai., i = 1, . . . , m, and −ej , j ∈ ν are linearly independent. Recall that ej is the vector of length
n with all entries zero except for the jth entry being a 1.

Let us consider this another way. Let B be the m×m submatrix of A consisting of columns
indexed by j ∈ β, and N be the m× (n−m) submatrix of A consisting of columns indexed by
j ∈ ν. After re-ordering the columns, the matrix of active constraints is

(

B N
0 −In−m

)

.

x is a basic solution if and only if this is a n × n nonsingular matrix, i.e., B is a m × m
nonsingular matrix. If we also reorder the components of x to get xB and xN , then Ax = b is
equivalent to

(

B N
)

(

xB

xN

)

= b.

The active equality constraints can thus be written as

(

B N
0 −In−m

)(

xB

xN

)

=

(

b
0

)

which implies that xN = 0 and xB = B−1b.

Proposition 1 For a standard form system of equations with A ∈ <m×n with rank(A) = m
and nonnegativity constraints, each basic solution corresponds to a partition of A into [B N ]
with B being a m × m matrix and nonsingular. The basic solution is xB = B−1b and xN = 0.
It is a basic feasible solution if B−1b ≥ 0. ut
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Note that the choice of B for a given basic solution x is not unique in general.
Last week, we showed that every bounded polyhedron could be represented as a polytope.

As well, every pointed polyhedron can be represented as a polytope plus a recession cone. Now
let us consider the converse question: Is every polytope a bounded polyhedron?

Let us motivate this question with some examples from combinatorial optimization. We
want to optimize a function defined on a finite, but large, set of objects. Very often, this can
be expressed as optimizing a linear function over a finite, but large, set of vectors in <p for
some p not too large. This is equivalent to optimizing a linear function over a polytope, the
convex hull of these vectors. So if we can represent this polytope as a polyhedron, we get an
linear programming problem. We will show that this is possible in theory.

Example 1 (The Assignment Problem) We have n jobs to be assigned to n machines,
one to each. We want to minimize the total processing time where job i takes cij units of
time on machine j. Each such assignment is a one-to-one mapping from {1, 2, . . . , n} to itself,
where π(i) = j means assigning job i to machine j. There are n! such permutations. Each
permutation π corresponds to an n × n matrix X = (xij) where

xij =

{

1 if π(i) = j
0 otherwise.

For example, X may be a 3 × 3 matrix (corresponding to a vector in <3
2

) of the form







0 1 0
0 0 1
1 0 0





 .

The cost of any permutation will thus be

n
∑

i=1

n
∑

j=1

cijxij.

The polytope is the convex combination of all permutation matrices. Can we express the convex
hull of all the permutation matrices as a polyhedron?

Obvious necessary conditions:

n
∑

i=1

xij = 1, j = 1, . . . , n,

n
∑

j=1

xij = 1, i = 1, . . . , n,

xij ≥ 0, all i, j.

It turns out that these conditions are also sufficient. (We’ll show this later in the course.)
Therefore, we were able to change a problem with n! discrete feasible solutions into a LP problem
with 2n equality constraints in nonnegative variables.
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[Note that this example is very degenerate: there are 2n equality constraints (actually, just
2n − 1 linearly independent equality constraints), so we expect basic solutions to have this
many nonzero components: but permutation matrices have just n nonzero components, their
“1” entries.]

Example 2 (The Travelling Salesman Problem) There are n cities, including the sales-
man’s home. He must visit all n cities in some order and return home. We want to minimize
the total length of the tour, i.e., the sum of all chosen cij, where cij is the cost of going directly
from city i to city j. For each such tour, consider an n × n matrix X = (xij), where

xij =

{

1 if the salesman goes directly from i to j
0 otherwise.

The cost of such an X is just
n
∑

i=1

n
∑

j=1

cijxij.

Can we represent the convex hull of all such tour vectors as a polyhedron? Yes, but not easily. It
is difficult because even though all tours are permutation matrices, not all permutation matrices
are tours. For example, in a four city tour, a matrix X that has the sales person go from
1 → 2, 2 → 1, 3 → 4, 4 → 3 is not a valid tour.

If we consider the symmetric case, where cji = cij and we do not distinguish between the
two directions a tour can be traversed, there are (n − 1)!/2 tours of n cities. For n = 7, the
TSP polytope, therefore, has 360 vertices, but it needs 3, 437 linear inequalities to define it; for
n = 8, these numbers become 2, 520 and 194, 187. So it is not a good idea to solve the problem
by obtaining all necessary inequalities and solving the resulting LP problem. Instead, partial
descriptions, where linear inequalities are added “as needed” on the “important” side of the
polytope can be very useful.

For the solution of various TSP problems, see the TSP page at http://www.tsp.gatech.edu/
and the milestones in computation at http://www.tsp.gatech.edu/history/milestone.html
The current record is a problem with over 24,000 cities.

Now let us consider the Separating Hyperplane Theorem. It is important since it will be
used in proving the Farkas Lemma as well as in the proof of Strong Duality. We need the
following theorem in proving the Separating Hyperplane Theorem:

Theorem 1 (Weierstrass’s Theorem) A real-valued continuous function defined on a non-
empty compact set attains its minimum and maximum.

Now we can state the Separating Hyperplane Theorem:

Theorem 2 (Separating Hyperplane Theorem) Let C ⊆ <n be closed and convex. Let
x ∈ <n and x /∈ C. Then, there exists 0 6= a ∈ <n, β ∈ <, such that aT x > β and aT z < β for
all z ∈ C.
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Mathematical Programming Homework 3
OR 630 Fall 2005 Due September 23, 2005

1. Find the polars of the following sets:
a) B∞ := {x ∈ IRn : ‖x‖∞ ≤ 1}, B1 := {x ∈ IRn : ‖x‖1 ≤ 1}, and

B2 := {x ∈ IRn : ‖x‖2 ≤ 1};
b) the ellipsoid {Mx : x ∈ IRn, ‖x‖2 ≤ 1}, where M is a nonsingular matrix in IRn×n;
c) the linear subspace N (A) = {x ∈ IRn : Ax = 0};
d) the affine subspace {x ∈ IRn : Ax = b}, given that it is nonempty and contains the point

w;
e) the cone {y ∈ IRm : AT y ≤ 0}; and
f) the nonnegative orthant {y ∈ IRm : y ≥ 0}.
Also,
g) show that the polar of a convex cone C ⊆ IRn is {z ∈ IRn : xT z ≤ 0 for all x ∈ C}. (You

may want to do this before cases (e) and (f) above.)

2 a) Show that, if there is a solution to AT y < 0, bT y > 0, then max{bT y : AT y ≤ c} is
(feasible and) unbounded.

b) Find an alternative system (as in the Farkas Lemma) to AT y < 0, bT y > 0.

3. Suppose C ⊆ IRn is closed and convex, and x ∈ ∂C, the boundary of C. This means
that x lies in C, but there are points arbitrarily close to x that do not. Show that there is a
supporting hyperplane to C at x, i.e., a nonzero a ∈ IRn with aT z ≤ aT x for all z ∈ C. (Hint:
any sequence of points ak in IRn all of Euclidean length 1 has a convergent subsequence.)

4. Give an example of a symmetric dual pair of problems (i.e., both are in inequality form
with nonnegative variables) with m = n = 1 and with both problems infeasible. Show that an
arbitrarily small perturbation of the data (A, b, c, all 1×1) can give problems where the primal
is infeasible and the dual unbounded or vice versa.
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