Mathematical Programming	Lecture 5
OR 630 Fall 2005	September 8, 2005
Notes by Gurmeet Singh	

Last time we saw that every bounded polyhedra is a polytope in the set of convex combination of its vertices.
Now we will extend the theory to pointed polyhedra (i.e., those that contain no lines).
Definition 1 Let C be a nonempty convex set: then the recession cone of $C, \operatorname{rec}(C)$, is

$$
\left\{d \in R^{m}: \forall x \in C, \forall \alpha \geq 0, x+\alpha d \in C\right\}
$$

Proposition 1 If C is a nonempty set then rec(C) is a nonempty convex cone.

Proof:

Let $d_{1}, d_{2} \in \operatorname{rec}(C), \lambda_{1}, \lambda_{2} \geq 0$. We want to show that $\lambda_{1} d_{1}+\lambda_{2} d_{2} \in \operatorname{rec}(C)$. For any $x \in C$ and any $\alpha \geq 0$

$$
x+\alpha\left(\lambda_{1} d_{1}+\lambda_{2} d_{2}\right)=\left[x+\left(\alpha \lambda_{1}\right) d_{1}\right]+\left(\alpha \lambda_{2}\right) d_{2} .
$$

The quantity in brackets lies in C since $\alpha \lambda_{1} \geq 0$ and $d_{1} \in \operatorname{rec}(C)$, and then the desired vector lies in C because $\alpha \lambda_{1} \geq 0$ and $d_{2} \in \operatorname{rec}(C)$. Also, $0 \in \operatorname{rec}(C)$ by definition.

Proposition 2 For $Q:=\left\{y \in \mathbf{R}^{m}: A_{x}^{T} y \leq c_{x}, A_{w}^{T} y=c_{w}\right\}$ then (if Q is nonempty)

$$
\operatorname{rec}(Q)=\left\{d \in \mathbb{R}^{m}: A_{x}^{T} d \leq 0, A_{w}^{T} d=0\right\} .
$$

Proof:

〇:
if $A_{x}^{T} d \leq 0, A_{w}^{T} d=0$ then for any $y \in Q, \alpha \geq 0$.

$$
\begin{aligned}
& A_{x}^{T}(y+\alpha d)=A_{x}^{T} y+\alpha A_{x}^{T} d \\
& \leq c_{x}+0=c_{x} \\
& \text { and similarly } \\
& A_{w}^{T}(y+\alpha d)=c_{w},
\end{aligned}
$$

hence $(y+\alpha d) \in Q$.
$\subseteq:$
Suppose $d \in \operatorname{rec}(Q)$, and choose any $y \in Q$. Then $\forall \alpha \geq 0$

$$
\begin{aligned}
& A_{x}^{T}(y+\alpha d)=A_{x}^{T} y+\alpha A_{x}^{T} d \leq c_{x} ; \\
& \text { and then } \\
& A_{x}^{T} y \leq c_{x} \Rightarrow A_{x}^{T} d \leq 0
\end{aligned}
$$

(otherwise, the inequality would fail for large α); similarly

$$
A_{w}^{T} d=0
$$

Theorem 1 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and K be its recession cone. Then

$$
Q=P+K:=\{p+d: p \in P, d \in K\} .
$$

Proof:

〇:
Every vertex of Q satisfies all linear constraints of Q so p also does for any $p \in P$.
So any $p+d \in P+K$ has

$$
\begin{aligned}
& A_{x}^{T}(p+d)=A_{x}^{T} p+A_{x}^{T} d \leq c_{x}+0=c_{x} \\
& A_{w}^{T}(p+d)=A_{w}^{T} p+A_{w}^{T} d=c_{w}+0=c_{w}
\end{aligned}
$$

$\subseteq:$
The proof is by induction on $\{m-r a(y)\}$.
True for $\{m-r a(y)=0\} \Leftrightarrow y$ is itself a vertex of Q and $d=0 \in \operatorname{rec}(C)$.
Suppose true if $\{m-r a(y)<k\}$ for some $k>0$ and consider $y \in Q$ with $r a(y)=m-k<m$. Choose $0 \neq d \in \mathbf{R}^{m}$ with $\left\{a_{j}^{T} d=0, \forall j \in I(y)\right\}$ and consider $y+\alpha d, \alpha \in \mathbf{R}$. Since Q is pointed there are three cases to consider.
(1) α is bounded above and below, say by $\underline{\alpha}<0 \& \bar{\alpha}>0$.

As in the previous theorem

$$
y=\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}(y+\underline{\alpha} d) \quad+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}}(y+\bar{\alpha} d)
$$

and $(y+\bar{\alpha} d)$ has $m-r a(y+\bar{\alpha} d)<k$, so

$$
(y+\bar{\alpha} d)=\bar{p}+\bar{d} \quad, \quad \bar{p} \in P \quad, \quad \bar{d} \in K
$$

and similarly

$$
(y+\underline{\alpha} d)=\underline{p}+\underline{d} \quad, \quad \underline{p} \in P \quad, \quad \underline{d} \in K
$$

so

$$
\begin{aligned}
y & =\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}(\underline{p}+\underline{d})+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}}(\bar{p}+\bar{d}) \\
& =\left[\frac{\bar{\alpha}}{\bar{\alpha}-\underline{p}} \underline{p}+\frac{-\underline{\alpha}}{\bar{\alpha}-\underline{\alpha}} \bar{p}\right]+\{\ldots \underline{\underline{d}}+\ldots \bar{d}\} .
\end{aligned}
$$

The vector in brackets is a point of P and that in braces a point in K.
(2) α is bounded below but not above. Then $d \in K$ and $y=[y+\underline{\alpha} d]+(-\underline{\alpha}) d$, with $\underline{\alpha}$ defined as before. The vector in brackets lies in $P+K$ as in the first part by the inductive hypothesis. Therefore

$$
\begin{aligned}
y & =(\underline{p}+\underline{d})+(-\underline{\alpha}) d \\
& =\underline{p}+(\underline{d}+(-\underline{\alpha}) d)
\end{aligned}
$$

lies in $P+K$.
(3) α is bounded above but not below. Then we can simply switch d to $-d$ and $\bar{\alpha}$ to $-\underline{\alpha}$, and we get back to case(2).
This completes the proof.

Theorem 2 (Fundamental theorem of LP). Consider the LP problem $\max \left\{b^{T} y: y \in Q\right\}$ with Q being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);
2. if there is a feasible solution and $b^{T} y$ is unbounded above on Q, then there is a ray or halfline: $\{y+\alpha d: \alpha \geq 0\} \in Q$ on which $b^{T} y$ is unbounded above; and
3. if $b^{T} y$ is bounded above on Q, then the max is attained and attained at a vertex Q.

Proof:

(1): If $Q \neq \emptyset, P \neq \emptyset$, so there exists a vertex.
(2) \& (3):

Assume $P \neq \emptyset \& P$ is a set of convex combinations of $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$.

$$
\begin{aligned}
\sup \left\{b^{T} y: y \in Q\right\} & =\sup \left\{b^{T} y: y \in P+K\right\} \\
& =\sup \left\{b^{T} p+b^{T} d: p \in P, d \in K\right\} \\
& =\sup \left\{b^{T} p: p \in P\right\}+\sup \left\{b^{T} d: d \in K\right\}
\end{aligned}
$$

If there is some $\bar{d} \in K$ with $b^{T} \bar{d}>0$ then by considering $\alpha \bar{d}, \alpha \rightarrow+\infty$, see that $\sup \left\{b^{T} d: d \in\right.$ $K\}=+\infty$. Then $b^{T} y$ is unbounded above on Q and clearly unbounded above on $\{y+\alpha \bar{d}, \alpha \geq$ $0\}$ for any $y \in Q$.
If there is no such $\bar{d} \in K$, then $\sup \left\{b^{T} d: d \in K\right\}=0$, attained by $d=0$. Then

$$
\begin{aligned}
\sup \left\{b^{T} y: y \in Q\right\} & =\sup \left\{b^{T} p: p \in P\right\} \\
& =\sup \left\{\sum_{i=1}^{k} \lambda_{i}\left(b^{T} v_{i}\right): \sum_{i=1}^{k} \lambda_{i}=1, \text { all } \lambda_{i} \geq 0\right\} \\
& =\max _{1 \leq i \leq k} b^{T} v_{i}
\end{aligned}
$$

In this case $\sup \left\{b^{T} y: y \in Q\right\}$ is attained by $y=v_{i}$ where i attains the maximum.

