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Notes by Gurmeet Singh

Last time we saw that every bounded polyhedra is a polytope in the set of convex combi-
nation of its vertices.
Now we will extend the theory to pointed polyhedra (i.e., those that contain no lines).

Definition 1 Let C be a nonempty convex set: then the recession cone of C, rec(C), is

{d ∈ Rm : ∀x ∈ C, ∀α ≥ 0, x + αd ∈ C}.

Proposition 1 If C is a nonempty set then rec(C) is a nonempty convex cone.

Proof:

Let d1, d2 ∈ rec(C), λ1, λ2 ≥ 0. We want to show that λ1d1 + λ2d2 ∈ rec(C). For any x ∈ C

and any α ≥ 0

x + α(λ1d1 + λ2d2) = [x + (αλ1)d1] + (αλ2)d2.

The quantity in brackets lies in C since αλ1 ≥ 0 and d1 ∈ rec(C), and then the desired vector
lies in C because αλ1 ≥ 0 and d2 ∈ rec(C). Also, 0 ∈ rec(C) by definition. ut

Proposition 2 For Q := {y ∈ IRm : AT
x y ≤ cx, A

T
wy = cw} then (if Q is nonempty)

rec(Q) ={d ∈ IRm : AT
x d ≤ 0, AT

wd = 0}.

Proof:

⊇:
if AT

x d ≤ 0, AT
wd = 0 then for any y ∈ Q, α ≥ 0.

AT
x (y + αd) = AT

x y + αAT
x d

≤ cx + 0 = cx,

and similarly
AT

w(y + αd) = cw,

hence (y + αd) ∈ Q.

⊆:
Suppose d ∈ rec(Q), and choose any y ∈ Q. Then ∀α ≥ 0

AT
x (y + αd) = AT

x y + αAT
x d ≤ cx;

and then
AT

x y ≤ cx ⇒ AT
x d ≤ 0

(otherwise, the inequality would fail for large α); similarly
AT

wd = 0.

ut
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Theorem 1 (Representation of Pointed Polyhedra). Let Q (defined as in Proposition 2) be a
nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and
K be its recession cone. Then

Q = P + K := {p + d : p ∈ P, d ∈ K}.

Proof:

⊇:
Every vertex of Q satisfies all linear constraints of Q so p also does for any p ∈ P .
So any p + d ∈ P + K has

AT
x (p + d) = AT

x p + AT
x d ≤ cx + 0 = cx;

AT
w(p + d) = AT

wp + AT
wd = cw + 0 = cw.

⊆:
The proof is by induction on {m − ra(y)}.

True for {m − ra(y) = 0} ⇔ y is itself a vertex of Q and d = 0 ∈ rec(C).

Suppose true if {m − ra(y) < k} for some k > 0 and consider y ∈ Q with ra(y) = m − k < m.
Choose 0 6= d ∈ IRm with {aT

j d = 0, ∀j ∈ I(y)} and consider y + αd, α ∈ IR. Since Q is pointed
there are three cases to consider.

(1) α is bounded above and below, say by α < 0 & α > 0.
As in the previous theorem

y = α
α−α

(y + αd) + −α

α−α
(y + αd),

and (y + αd) has m − ra(y + αd) < k, so

(y + αd) = p + d , p ∈ P , d ∈ K,

and similarly
(y + αd) = p + d , p ∈ P , d ∈ K,

so

y = α
α−α

(p + d) + −α

α−α
(p + d)

= [ α
α−α

p + −α

α−α
p] + {. . . d + . . . d}.

The vector in brackets is a point of P and that in braces a point in K.

(2) α is bounded below but not above. Then d ∈ K and y = [y + αd] + (−α)d, with α

defined as before. The vector in brackets lies in P + K as in the first part by the inductive
hypothesis. Therefore
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y = (p + d) + (−α)d
= p + (d + (−α)d)

lies in P + K.
(3) α is bounded above but not below. Then we can simply switch d to −d and α to −α,

and we get back to case(2).
This completes the proof.
ut

Theorem 2 (Fundamental theorem of LP). Consider the LP problem max{bT y : y ∈ Q} with
Q being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);

2. if there is a feasible solution and bT y is unbounded above on Q, then there is a ray or
halfline: {y + αd : α ≥ 0} ∈ Q on which bT y is unbounded above; and

3. if bT y is bounded above on Q, then the max is attained and attained at a vertex Q.

Proof:

(1): If Q 6= ∅, P 6= ∅, so there exists a vertex.

(2)& (3):
Assume P 6= ∅ & P is a set of convex combinations of v1, v2, v3, ..., vk.

sup{bT y : y ∈ Q} = sup{bT y : y ∈ P + K}
= sup{bT p + bT d : p ∈ P, d ∈ K}
= sup{bT p : p ∈ P} + sup{bT d : d ∈ K}.

If there is some d ∈ K with bT d > 0 then by considering αd , α → +∞, see that sup{bT d : d ∈
K} = +∞. Then bT y is unbounded above on Q and clearly unbounded above on {y+αd , α ≥
0} for any y ∈ Q.
If there is no such d ∈ K, then sup{bT d : d ∈ K} = 0, attained by d = 0. Then

sup{bT y : y ∈ Q} = sup{bT p : p ∈ P}
= sup{

∑k
i=1

λi(b
T vi) :

∑k
i=1

λi = 1, all λi ≥ 0}
= max1≤i≤kb

T vi

In this case sup{bT y : y ∈ Q} is attained by y = vi where i attains the maximum.
ut
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