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Last time we saw that every bounded polyhedra is a polytope in the set of convex combi-
nation of its vertices.
Now we will extend the theory to pointed polyhedra (i.e., those that contain no lines).

Definition 1 Let C' be a nonempty convex set: then the recession cone of C, rec(C), is
{de R" :Vx € C,\Va >0,z + ad € C}.
Proposition 1 If C is a nonempty set then rec(C') is a nonempty convex cone.

Proof:
Let dy,dy € rec(C), A1, Ay > 0. We want to show that Ajd; + \ads € rec(C'). For any x € C
and any a > 0

xr -+ Oé()\ldl + )\gdg) = [J} -+ (Oé)\l)dl] —+ (Oé)\g)dg.

The quantity in brackets lies in C since aA; > 0 and d; € rec(C'), and then the desired vector
lies in C' because aA; > 0 and ds € rec(C'). Also, 0 € rec(C) by definition. O

Proposition 2 For Q :={y € R™: Aly < c,, ALy = ¢,,} then (if Q is nonempty)
rec(QQ) ={d € R™ : ATd <0,ATd = 0}.
Proof:

D
if ATd <0,ATd =0 then for any y € Q, > 0.

AT(y+ad) = ATy+aAld
< ¢ +0= Cx,
and similarly

AL (y + ad)

Cuw)

hence (y + ad) € Q.

C:
Suppose d € rec(Q), and choose any y € ). Then Yo > 0

Al(y+ad) = Aly+adld < c;
and then
Agy < Cy = Afd < 0
(otherwise, the inequality would fail for large «); similarly

w

O



Theorem 1 (Representation of Pointed Polyhedra). Let QQ (defined as in Proposition 2) be a
nonempty pointed polyhedron, and let P be the set of all convex combinations of its vertices and
K be its recession cone. Then

Q=P+K:={p+d:pe P,de K}.

Proof:

o

Every vertex of () satisfies all linear constraints of () so p also does for any p € P.
So any p+d € P+ K has

AT(ptd)= ATp+ ATd < e, 10 =y
AT(p+d) = ATp+ ATd = c,, + 0 = c,.

C:
The proof is by induction on {m — ra(y)}.

True for {m — ra(y) = 0} < y is itself a vertex of @ and d = 0 € rec(C).
Suppose true if {m — ra(y) < k} for some k& > 0 and consider y € @ with ra(y) =m — k < m.
Choose 0 # d € R™ with {a]d = 0,Vj € I(y)} and consider y + ad,a € R. Since Q is pointed

there are three cases to consider.

(1) v is bounded above and below, say by a <0 & @ > 0.
As in the previous theorem

y = 5 W+ad) + Z(y+ad),

and (y + ad) has m — ra(y + @d) < k, so

(y+ad) = p + d , peP , deK,
and similarly
y+ad) = p + d , peP , deK,
SO
y = F250+d + =@+ d)

The vector in brackets is a point of P and that in braces a point in K.

(2) « is bounded below but not above. Then d € K and y = [y + ad] + (—a)d, with «
defined as before. The vector in brackets lies in P + K as in the first part by the inductive
hypothesis. Therefore



y = (p+d+ (-

a)d
= p+(d+(—a)d)

lies in P + K.
(3) « is bounded above but not below. Then we can simply switch d to —d and @ to —a,
and we get back to case(2).
This completes the proof.
O

Theorem 2 (Fundamental theorem of LP). Consider the LP problem max{bTy : y € Q} with
Q@ being a pointed polyhedron. Then

1. if there is a feasible solution, there is a vertex solution (basic feasible solution);

2. if there is a feasible solution and bTy is unbounded above on @, then there is a ray or
halfline: {y+ ad : a > 0} € Q on which bTy is unbounded above; and

3. if by is bounded above on Q, then the max is attained and attained at a vertex Q.

Proof:
(1): If Q # 0, P # 0, so there exists a vertex.

(2)& (3):

Assume P # () & P is a set of convex combinations of vy, vo, vs, ..., V.

sup{bt’y:y € Q} = sup{db’y:ye P+ K}
= sup{t’p+bld:pe Pdec K}
= sup{tTp:p € P} +sup{b’d:dec K}.

If there is some d € K with bTd > 0 then by considering ad , a — 400, see that sup{b’d : d €
K} = +oco. Then by is unbounded above on @ and clearly unbounded above on {y+ad , a >
0} for any y € Q.

If there is no such d € K, then sup{b”d : d € K} = 0, attained by d = 0. Then

sup{b"y:y € Q} = sup{b'p:pec P}
= sup{Tr N0 ) XE A =1, all \; >0}

_ T
= maxlgigkb (5

In this case sup{bTy : y € Q} is attained by y = v; where i attains the maximum.
g



