Mathematical Programming Lecture 4
OR 630 Fall 2005 September 6, 2005
Instructor: Mike Todd Scribe: Chris Provan

The material we cover here may be found in Chapter 2 of Bertsimas and Tsitsiklis or, for
a more condensed reading, in Chapter 7 of Schrijver (available online at
hitp://encompass.library.cornell.edu/cgi-bin/scripts/ebooks. cgi?bookid=17885).

We closed the last lecture with a brief discussion of the relationship between polytopes and
polyhedra.

Recall that a polytope is the set of all convex combinations of a finite set of points vy, v, . . ., Ug.
We can also think of a polytope with k generating points as a linear transformation of a (k—1)-
dimensional simplex. A polyhedron is the intersection of a finite number of half-spaces, and
if bounded, can also be thought of as an inverse linear image of a simplex.

This lecture will focus on making the relationship between polytopes and polyhedra more
explicit.

Definition 1 Let () be a convex set in R". Then x € () is an extreme point of ) if v cannot
be written as (1 = N)y+ Az fory,z€ Q,y# 2z, 0 <A< 1. x € Q is a vertex of Q if f € R"
with argmaz{fTz : = € Q} = {x} (i.e. x is the unique optimal solution for some objective
coefficient vector f).

It is interesting to note that because these definitions are generalized for all convex sets -
not just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples
are the points on an oval where the line segments of the sides meet the curves of the ends.

Figure 1: Four extreme points in a two-dimensional convex set that are not vertices.

For the purposes of the subsequent theorem and definitions, let us define the following
notation for a polyhedron:

QF ={yeR™: Aly<c,; ATy =c,}
= {yeR™: a;frygcj,jENx;a?y:cj,jENw}

Definition 2 I(y) :={j € N, UN, : a] y = ¢;} and ra(y) := rank({a; : j € I(y)})
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Figure 2: A geometric representation of the four basic solutions (dots) and two basic feasible
solutions (boxed) of an LP problem with one equality and four inequality constraints on two
variables.

Definition 3 Call y € R™ a basic solution of Q* if N,, C I(y) and ra(y) = m. y is a basic
feasible solution of Q* if it also lies inside Q*. (See Figure 2).

Since there are only a finite number of constraints defining *, there are only a finite number
of ways to choose I(y), and if ra(y) = m then y is uniquely determined by I(y). So there are
at most ('N“;JLN”‘) basic solutions.

Theorem 1 (Characterization of Vertices). Let Q* be defined as above. The following
are equivalent:

(a) y is a vertex of Q*.

(b) y is an extreme point of Q*.

(c) y is a basic feasible solution of QQ*.

Proof: We first prove that (a) = (b). Let y be a vertex of @Q* and suppose by way of
contraposition that y is not an extreme point of Q*. So ds,t € Q*, s #t, 0 < A < 1 such that
y=(1—X)s+ At. Since y is a vertex, 3f € R™ such that

argmax{f"2:2€Q}={y} = fTs<fly fft<fTy
=1 -=NfTs+ Xt < fTy.
But we also have
ffy =1 =N)s + )]
= (L= N fTs + ATt
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which is a contradiction. So y must be an extreme point.

We now prove (b) = (c). Let y be an extreme point of Q* but suppose by way of contrapo-
sition that y is not a basic feasible solution. For y to be an extreme point of Q*, it must lie in
Q* and therefore N, C I(y). The only possible way y could not be a basic feasible solution is
for ra(y) < m, and hence there is a direction vector 0 # d € R™ with al d = 0 for all j € I(y).
So

ajy=c;, ifj€I(y);
aJT(y +ad) ={ aJTy + oca?d <¢j J—l— oza?cjl, Otherwgsz.
So for some ¢ > 0,V|a| < e,y + ad € Q*. So y can be written as a convex combination of
two other points of Q*, namely y = %Ed + y;‘?d , which contradicts y being an extreme point.
Therefore y must also be a basic feasible solution of Q*.

Finally, we prove (¢) = (a). Let y be a basic feasible solution of @Q*, which implies
ra(y) = m. By definition ay = ¢; for j € I(y), and therefore (X;cr(y) a;)"y = Zjerqy) -
Because ra(y) = m, y is the unique point in Q* that satisfies this equation. Let f = 3¢/, a;.
Vz e Q5 € Iy : a;‘.rz < ¢;, which implies 7z < Yjer(y) ¢j- But as we have shown, Ty
satisfies this constraint with equality, and therefore y maximizes f7z over Q*. And because y
uniquely satisfies with equality, it uniquely maximizes f z, and so y is by definition a vertex. 0O

The following two corollaries are given without proof.

Corollary 1 Any polyhedron @ has only a finite number of vertices. Specifically, if Q) is defined
by n constraints on m variables then it has a maximum of (Z) vertices.

Corollary 2 The set of basic feasible solutions does not depend on the representation of Q).

We now prove the claim delivered without proof at the end of the last lecture — that any
bounded polyhedron is a polytope. We must first give a concrete definition to the notion of
boundedness.

Definition 4 A convex set Q C R" is bounded if for some M > 0, ||y|| < M for ally € Q.
A convez set is pointed if it does not contain any line {y + ad : « € R} for 0 # d € R",
y € R™.

Theorem 2 (Representation of Bounded Polyhedra). A bounded polyhedron @Q is the
set of all convex combinations of its vertices and is therefore a polytope.

Proof: Since () is convex and contains all of its own vertices, it necessarily contains all
convex combinations of its vertices. So it only remains to show that every y € @ can be
written as a convex combination of vertices of (). We will prove this result through induction
on m — ra(y).

Basis: Let m — ra(y) = 0. Then ra(y) = m and since y € @, y is a basic feasible solution,
and therefore a vertex, of ().



Inductive Step: Suppose y € () can be written as a convex combination of vertices when
m—ra(y) < k for some k > 0, and consider y € () with ra(y) = m—k < m. Choose a direction
vector 0 # d € R™ such that ] d = 0 for j € I(7). Since Q is bounded, there exist a < 0, > 0
such that y + ad lies in () whenever a < a < @ and outside ) otherwise. Geometrically, this
is equivalent to moving positively and negatively in direction d until we run into a constraint.
Now consider 7 + ad and § + ad. We can write § = =2~ (7 + ad) + —(§ + ad) .

Therefore 7 is a convex combination of two points in ). Let us look more closely now at
9y + ad. We defined & such that y + ad, in addition to holding with equality to all constraints
where 4 held with equality, it was also tight to a constraint to which y was not tight, say
afz < ¢;. This means that aly < ¢x and af (§ + ad) = c. Since ay ¢ span{a; : j € 1(y)}, we
have

ra(y + ad) =rank{a;: j € I(y+ad)} > rank({a; : j € I(y)} U{ar}) > ra(y) .

So m — ra(y + ad) < k; hence y + ad is a convex combination of the vertices of (). The
same argument holds for ¥ + ad, and so y itself is a convex combination of the vertices of Q).
This completes the induction step, and we have proved the theorem. O



