| Mathematical Programming | Lecture 4            |
|--------------------------|----------------------|
| OR 630 Fall 2005         | September 6, 2005    |
| Instructor: Mike Todd    | Scribe: Chris Provan |

The material we cover here may be found in Chapter 2 of Bertsimas and Tsitsiklis or, for a more condensed reading, in Chapter 7 of Schrijver (available online at http://encompass.library.cornell.edu/cgi-bin/scripts/ebooks.cgi?bookid=17885).

We closed the last lecture with a brief discussion of the relationship between polytopes and polyhedra.

Recall that a **polytope** is the set of all convex combinations of a finite set of points  $v_1, v_2, \ldots, v_k$ . We can also think of a polytope with k generating points as a linear transformation of a (k-1)dimensional simplex. A **polyhedron** is the intersection of a finite number of half-spaces, and if bounded, can also be thought of as an inverse linear image of a simplex.

This lecture will focus on making the relationship between polytopes and polyhedra more explicit.

**Definition 1** Let Q be a convex set in  $\mathbb{R}^n$ . Then  $x \in Q$  is an **extreme point** of Q if x cannot be written as  $(1 - \lambda)y + \lambda z$  for  $y, z \in Q$ ,  $y \neq z$ ,  $0 < \lambda < 1$ .  $x \in Q$  is a **vertex** of Q if  $\exists f \in \mathbb{R}^n$  with  $\operatorname{argmax}\{f^T z : z \in Q\} = \{x\}$  (i.e. x is the unique optimal solution for some objective coefficient vector f).

It is interesting to note that because these definitions are generalized for all convex sets not just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples are the points on an oval where the line segments of the sides meet the curves of the ends.



Figure 1: Four extreme points in a two-dimensional convex set that are not vertices.

For the purposes of the subsequent theorem and definitions, let us define the following notation for a polyhedron:

$$Q^* := \{ y \in \mathbf{R}^m : A_x^T y \le c_x; A_w^T y = c_w \} \\ =: \{ y \in \mathbf{R}^m : a_j^T y \le c_j, j \in N_x; a_j^T y = c_j, j \in N_w \}$$

**Definition 2**  $I(\mathbf{y}) := \{j \in N_x \cup N_w : a_j^T y = c_j\}$  and  $\mathbf{ra}(\mathbf{y}) := rank(\{a_j : j \in I(y)\})$ 



Figure 2: A geometric representation of the four basic solutions (dots) and two basic feasible solutions (boxed) of an LP problem with one equality and four inequality constraints on two variables.

**Definition 3** Call  $y \in \mathbb{R}^m$  a basic solution of  $Q^*$  if  $N_w \subseteq I(y)$  and ra(y) = m. y is a basic feasible solution of  $Q^*$  if it also lies inside  $Q^*$ . (See Figure 2).

Since there are only a finite number of constraints defining  $Q^*$ , there are only a finite number of ways to choose I(y), and if ra(y) = m then y is uniquely determined by I(y). So there are at most  $\binom{|N_x \cup N_w|}{m}$  basic solutions.

**Theorem 1** (*Characterization of Vertices*). Let  $Q^*$  be defined as above. The following are equivalent:

- (a) y is a vertex of  $Q^*$ .
- (b) y is an extreme point of  $Q^*$ .
- (c) y is a basic feasible solution of  $Q^*$ .

**Proof:** We first prove that (a)  $\Rightarrow$  (b). Let y be a vertex of  $Q^*$  and suppose by way of contraposition that y is not an extreme point of  $Q^*$ . So  $\exists s, t \in Q^*, s \neq t, 0 < \lambda < 1$  such that  $y = (1 - \lambda)s + \lambda t$ . Since y is a vertex,  $\exists f \in \mathbb{R}^m$  such that

$$\operatorname{argmax} \{ f^T z : z \in Q \} = \{ y \} \quad \Rightarrow f^T s < f^T y, f^T t < f^T y \\ \Rightarrow (1 - \lambda) f^T s + \lambda t < f^T y.$$

But we also have

$$\begin{aligned} f^T y &= f^T [(1-\lambda)s + \lambda t] \\ &= (1-\lambda)f^T s + \lambda f^T t, \end{aligned}$$

which is a contradiction. So y must be an extreme point.

We now prove (b)  $\Rightarrow$  (c). Let y be an extreme point of  $Q^*$  but suppose by way of contraposition that y is not a basic feasible solution. For y to be an extreme point of  $Q^*$ , it must lie in  $Q^*$  and therefore  $N_w \subseteq I(y)$ . The only possible way y could not be a basic feasible solution is for ra(y) < m, and hence there is a direction vector  $0 \neq d \in \mathbb{R}^m$  with  $a_j^T d = 0$  for all  $j \in I(y)$ . So

$$a_j^T(y + \alpha d) = \{ \begin{array}{cc} a_j^T y = c_j, & if j \in I(y); \\ a_j^T y + \alpha a_j^T d < c_j + \alpha a_j^T d, & otherwise. \end{array}$$

So for some  $\varepsilon > 0, \forall |\alpha| \le \varepsilon, y + \alpha d \in Q^*$ . So y can be written as a convex combination of two other points of  $Q^*$ , namely  $y = \frac{y + \varepsilon d}{2} + \frac{y - \varepsilon d}{2}$ , which contradicts y being an extreme point. Therefore y must also be a basic feasible solution of  $Q^*$ .

Finally, we prove (c)  $\Rightarrow$  (a). Let y be a basic feasible solution of  $Q^*$ , which implies ra(y) = m. By definition  $a_j^T y = c_j$  for  $j \in I(y)$ , and therefore  $(\sum_{j \in I(y)} a_j)^T y = \sum_{j \in I(y)} c_j$ . Because ra(y) = m, y is the unique point in  $Q^*$  that satisfies this equation. Let  $f = \sum_{j \in I(y)} a_j$ .  $\forall z \in Q^*, j \in I(y) : a_j^T z \leq c_j$ , which implies  $f^T z \leq \sum_{j \in I(y)} c_j$ . But as we have shown,  $f^T y$  satisfies this constraint with equality, and therefore y maximizes  $f^T z$  over  $Q^*$ . And because y uniquely satisfies with equality, it uniquely maximizes  $f^T z$ , and so y is by definition a vertex.  $\Box$ 

The following two corollaries are given without proof.

**Corollary 1** Any polyhedron Q has only a finite number of vertices. Specifically, if Q is defined by n constraints on m variables then it has a maximum of  $\binom{n}{m}$  vertices.

**Corollary 2** The set of basic feasible solutions does not depend on the representation of Q.

We now prove the claim delivered without proof at the end of the last lecture – that any bounded polyhedron is a polytope. We must first give a concrete definition to the notion of boundedness.

**Definition 4** A convex set  $Q \subseteq \mathbb{R}^n$  is **bounded** if for some M > 0,  $||y|| \leq M$  for all  $y \in Q$ . A convex set is **pointed** if it does not contain any line  $\{y + \alpha d : \alpha \in \mathbb{R}\}$  for  $0 \neq d \in \mathbb{R}^n$ ,  $y \in \mathbb{R}^n$ .

**Theorem 2** (*Representation of Bounded Polyhedra*). A bounded polyhedron Q is the set of all convex combinations of its vertices and is therefore a polytope.

**Proof:** Since Q is convex and contains all of its own vertices, it necessarily contains all convex combinations of its vertices. So it only remains to show that every  $y \in Q$  can be written as a convex combination of vertices of Q. We will prove this result through induction on m - ra(y).

Basis: Let m - ra(y) = 0. Then ra(y) = m and since  $y \in Q$ , y is a basic feasible solution, and therefore a vertex, of Q.

Inductive Step: Suppose  $y \in Q$  can be written as a convex combination of vertices when m - ra(y) < k for some k > 0, and consider  $\bar{y} \in Q$  with  $ra(\bar{y}) = m - k < m$ . Choose a direction vector  $0 \neq d \in \mathbb{R}^m$  such that  $a_j^T d = 0$  for  $j \in I(\bar{y})$ . Since Q is bounded, there exist  $\underline{\alpha} < 0, \bar{\alpha} > 0$  such that  $\bar{y} + \alpha d$  lies in Q whenever  $\underline{\alpha} \leq \alpha \leq \bar{\alpha}$  and outside Q otherwise. Geometrically, this is equivalent to moving positively and negatively in direction d until we run into a constraint. Now consider  $\bar{y} + \underline{\alpha}d$  and  $\bar{y} + \bar{\alpha}d$ . We can write  $\bar{y} = \frac{\bar{\alpha}}{\bar{\alpha} - \underline{\alpha}}(\bar{y} + \underline{\alpha}d) + \frac{-\underline{\alpha}}{\bar{\alpha} - \underline{\alpha}}(\bar{y} + \bar{\alpha}d)$ .

Therefore  $\bar{y}$  is a convex combination of two points in Q. Let us look more closely now at  $\bar{y} + \bar{\alpha}d$ . We defined  $\bar{\alpha}$  such that  $\bar{y} + \bar{\alpha}d$ , in addition to holding with equality to all constraints where  $\bar{y}$  held with equality, it was also tight to a constraint to which  $\bar{y}$  was not tight, say  $a_k^T z \leq c_k$ . This means that  $a_k^T \bar{y} < c_k$  and  $a_k^T (\bar{y} + \bar{\alpha}d) = c_k$ . Since  $a_k \notin span\{a_j : j \in I(\bar{y})\}$ , we have

 $ra(\bar{y} + \bar{\alpha}d) = rank\{a_j : j \in I(\bar{y} + \bar{\alpha}d)\} \ge rank(\{a_j : j \in I(\bar{y})\} \cup \{a_k\}) > ra(\bar{y}) .$ 

So  $m - ra(\bar{y} + \bar{\alpha}d) < k$ ; hence  $\bar{y} + \bar{\alpha}d$  is a convex combination of the vertices of Q. The same argument holds for  $\bar{y} + \underline{\alpha}d$ , and so  $\bar{y}$  itself is a convex combination of the vertices of Q. This completes the induction step, and we have proved the theorem.  $\Box$