The material we cover here may be found in Chapter 2 of Bertsimas and Tsitsiklis or, for a more condensed reading, in Chapter 7 of Schrijver (available online at http://encompass.library.cornell.edu/cgi-bin/scripts/ebooks.cgi?bookid=17885).

We closed the last lecture with a brief discussion of the relationship between polytopes and polyhedra.

Recall that a polytope is the set of all convex combinations of a finite set of points $v_{1}, v_{2}, \ldots, v_{k}$. We can also think of a polytope with k generating points as a linear transformation of a $(k-1)$ dimensional simplex. A polyhedron is the intersection of a finite number of half-spaces, and if bounded, can also be thought of as an inverse linear image of a simplex.

This lecture will focus on making the relationship between polytopes and polyhedra more explicit.

Definition 1 Let Q be a convex set in \mathbb{R}^{n}. Then $x \in Q$ is an extreme point of Q if x cannot be written as $(1-\lambda) y+\lambda z$ for $y, z \in Q, y \neq z, 0<\lambda<1$. $x \in Q$ is a vertex of Q if $\exists f \in \mathbb{R}^{n}$ with $\operatorname{argmax}\left\{f^{T} z: z \in Q\right\}=\{x\}$ (i.e. x is the unique optimal solution for some objective coefficient vector f).

It is interesting to note that because these definitions are generalized for all convex sets not just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples are the points on an oval where the line segments of the sides meet the curves of the ends.

Figure 1: Four extreme points in a two-dimensional convex set that are not vertices.
For the purposes of the subsequent theorem and definitions, let us define the following notation for a polyhedron:

$$
\begin{aligned}
Q^{*} & :=\left\{y \in \mathbb{R}^{m}: A_{x}^{T} y \leq c_{x} ; A_{w}^{T} y=c_{w}\right\} \\
& =:\left\{y \in \mathbb{R}^{m}: a_{j}^{T} y \leq c_{j}, j \in N_{x} ; a_{j}^{T} y=c_{j}, j \in N_{w}\right\}
\end{aligned}
$$

Definition $2 \mathbf{I}(\mathbf{y}):=\left\{j \in N_{x} \cup N_{w}: a_{j}^{T} y=c_{j}\right\}$ and $\mathbf{r a}(\mathbf{y}):=\operatorname{rank}\left(\left\{a_{j}: j \in I(y)\right\}\right)$

Figure 2: A geometric representation of the four basic solutions (dots) and two basic feasible solutions (boxed) of an LP problem with one equality and four inequality constraints on two variables.

Definition 3 Call $y \in \mathbb{R}^{m}$ a basic solution of Q^{*} if $N_{w} \subseteq I(y)$ and ra $(y)=m$. y is a basic feasible solution of Q^{*} if it also lies inside Q^{*}. (See Figure 2).

Since there are only a finite number of constraints defining Q^{*}, there are only a finite number of ways to choose $I(y)$, and if $r a(y)=m$ then y is uniquely determined by $I(y)$. So there are at most $\binom{\left|N_{x} \cup N_{w}\right|}{m}$ basic solutions.

Theorem 1 (Characterization of Vertices). Let Q^{*} be defined as above. The following are equivalent:
(a) y is a vertex of Q^{*}.
(b) y is an extreme point of Q^{*}.
(c) y is a basic feasible solution of Q^{*}.

Proof: We first prove that (a) \Rightarrow (b). Let y be a vertex of Q^{*} and suppose by way of contraposition that y is not an extreme point of Q^{*}. So $\exists s, t \in Q^{*}, s \neq t, 0<\lambda<1$ such that $y=(1-\lambda) s+\lambda t$. Since y is a vertex, $\exists f \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
\operatorname{argmax}\left\{f^{T} z: z \in Q\right\}=\{y\} & \Rightarrow f^{T} s<f^{T} y, f^{T} t<f^{T} y \\
& \Rightarrow(1-\lambda) f^{T} s+\lambda t<f^{T} y .
\end{aligned}
$$

But we also have

$$
\begin{aligned}
f^{T} y & =f^{T}[(1-\lambda) s+\lambda t] \\
& =(1-\lambda) f^{T} s+\lambda f^{T} t,
\end{aligned}
$$

which is a contradiction. So y must be an extreme point.
We now prove $(\mathrm{b}) \Rightarrow(\mathrm{c})$. Let y be an extreme point of Q^{*} but suppose by way of contraposition that y is not a basic feasible solution. For y to be an extreme point of Q^{*}, it must lie in Q^{*} and therefore $N_{w} \subseteq I(y)$. The only possible way y could not be a basic feasible solution is for $r a(y)<m$, and hence there is a direction vector $0 \neq d \in \mathbb{R}^{m}$ with $a_{j}^{T} d=0$ for all $j \in I(y)$. So

$$
a_{j}^{T}(y+\alpha d)=\left\{\begin{aligned}
a_{j}^{T} y=c_{j}, & \text { if } j \in I(y) ; \\
a_{j}^{T} y+\alpha a_{j}^{T} d<c_{j}+\alpha a_{j}^{T} d, & \text { otherwise } .
\end{aligned}\right.
$$

So for some $\varepsilon>0, \forall|\alpha| \leq \varepsilon, y+\alpha d \in Q^{*}$. So y can be written as a convex combination of two other points of Q^{*}, namely $y=\frac{y+\varepsilon d}{2}+\frac{y-\varepsilon d}{2}$, which contradicts y being an extreme point. Therefore y must also be a basic feasible solution of Q^{*}.

Finally, we prove $(\mathrm{c}) \Rightarrow(\mathrm{a})$. Let y be a basic feasible solution of Q^{*}, which implies $r a(y)=m$. By definition $a_{j}^{T} y=c_{j}$ for $j \in I(y)$, and therefore $\left(\sum_{j \in I(y)} a_{j}\right)^{T} y=\sum_{j \in I(y)} c_{j}$. Because $r a(y)=m, y$ is the unique point in Q^{*} that satisfies this equation. Let $f=\sum_{j \in I(y)} a_{j}$. $\forall z \in Q^{*}, j \in I(y): a_{j}^{T} z \leq c_{j}$, which implies $f^{T} z \leq \sum_{j \in I(y)} c_{j}$. But as we have shown, $f^{T} y$ satisfies this constraint with equality, and therefore y maximizes $f^{T} z$ over Q^{*}. And because y uniquely satisfies with equality, it uniquely maximizes $f^{T} z$, and so y is by definition a vertex.

The following two corollaries are given without proof.
Corollary 1 Any polyhedron Q has only a finite number of vertices. Specifically, if Q is defined by n constraints on m variables then it has a maximum of $\binom{n}{m}$ vertices.

Corollary 2 The set of basic feasible solutions does not depend on the representation of Q.
We now prove the claim delivered without proof at the end of the last lecture - that any bounded polyhedron is a polytope. We must first give a concrete definition to the notion of boundedness.

Definition $4 A$ convex set $Q \subseteq \mathbb{R}^{n}$ is bounded if for some $M>0,\|y\| \leq M$ for all $y \in Q$. A convex set is pointed if it does not contain any line $\{y+\alpha d: \alpha \in \mathbb{R}\}$ for $0 \neq d \in \mathbb{R}^{n}$, $y \in \mathbf{R}^{n}$.

Theorem 2 (Representation of Bounded Polyhedra). A bounded polyhedron Q is the set of all convex combinations of its vertices and is therefore a polytope.

Proof: Since Q is convex and contains all of its own vertices, it necessarily contains all convex combinations of its vertices. So it only remains to show that every $y \in Q$ can be written as a convex combination of vertices of Q. We will prove this result through induction on $m-r a(y)$.

Basis: Let $m-r a(y)=0$. Then $r a(y)=m$ and since $y \in Q, y$ is a basic feasible solution, and therefore a vertex, of Q.

Inductive Step: Suppose $y \in Q$ can be written as a convex combination of vertices when $m-r a(y)<k$ for some $k>0$, and consider $\bar{y} \in Q$ with $r a(\bar{y})=m-k<m$. Choose a direction vector $0 \neq d \in \mathbb{R}^{m}$ such that $a_{j}^{T} d=0$ for $j \in I(\bar{y})$. Since Q is bounded, there exist $\underline{\alpha}<0, \bar{\alpha}>0$ such that $\bar{y}+\alpha d$ lies in Q whenever $\underline{\alpha} \leq \alpha \leq \bar{\alpha}$ and outside Q otherwise. Geometrically, this is equivalent to moving positively and negatively in direction d until we run into a constraint. Now consider $\bar{y}+\underline{\alpha} d$ and $\bar{y}+\bar{\alpha} d$. We can write $\bar{y}=\frac{\bar{\alpha}}{\bar{\alpha}-\underline{\alpha}}(\bar{y}+\underline{\alpha} d)+\frac{-\alpha}{\bar{\alpha}-\underline{\alpha}}(\bar{y}+\bar{\alpha} d)$.

Therefore \bar{y} is a convex combination of two points in Q. Let us look more closely now at $\bar{y}+\bar{\alpha} d$. We defined $\bar{\alpha}$ such that $\bar{y}+\bar{\alpha} d$, in addition to holding with equality to all constraints where \bar{y} held with equality, it was also tight to a constraint to which \bar{y} was not tight, say $a_{k}^{T} z \leq c_{k}$. This means that $a_{k}^{T} \bar{y}<c_{k}$ and $a_{k}^{T}(\bar{y}+\bar{\alpha} d)=c_{k}$. Since $a_{k} \notin \operatorname{span}\left\{a_{j}: j \in I(\bar{y})\right\}$, we have
$r a(\bar{y}+\bar{\alpha} d)=\operatorname{rank}\left\{a_{j}: j \in I(\bar{y}+\bar{\alpha} d)\right\} \geq \operatorname{rank}\left(\left\{a_{j}: j \in I(\bar{y})\right\} \cup\left\{a_{k}\right\}\right)>\operatorname{ra}(\bar{y})$.
So $m-r a(\bar{y}+\bar{\alpha} d)<k$; hence $\bar{y}+\bar{\alpha} d$ is a convex combination of the vertices of Q. The same argument holds for $\bar{y}+\underline{\alpha} d$, and so \bar{y} itself is a convex combination of the vertices of Q. This completes the induction step, and we have proved the theorem.

