
Mathematical Programming Lecture 4
OR 630 Fall 2005 September 6, 2005
Instructor: Mike Todd Scribe: Chris Provan

The material we cover here may be found in Chapter 2 of Bertsimas and Tsitsiklis or, for
a more condensed reading, in Chapter 7 of Schrijver (available online at
http://encompass.library.cornell.edu/cgi-bin/scripts/ebooks.cgi?bookid=17885).

We closed the last lecture with a brief discussion of the relationship between polytopes and
polyhedra.

Recall that a polytope is the set of all convex combinations of a finite set of points v1, v2, . . . , vk.
We can also think of a polytope with k generating points as a linear transformation of a (k−1)-
dimensional simplex. A polyhedron is the intersection of a finite number of half-spaces, and
if bounded, can also be thought of as an inverse linear image of a simplex.

This lecture will focus on making the relationship between polytopes and polyhedra more
explicit.

Definition 1 Let Q be a convex set in IRn. Then x ∈ Q is an extreme point of Q if x cannot
be written as (1− λ)y + λz for y, z ∈ Q, y 6= z, 0 < λ < 1. x ∈ Q is a vertex of Q if ∃f ∈ IRn

with argmax{fT z : z ∈ Q} = {x} (i.e. x is the unique optimal solution for some objective
coefficient vector f).

It is interesting to note that because these definitions are generalized for all convex sets -
not just polyhedra - a point could possibly be extreme but not be a vertex. One set of examples
are the points on an oval where the line segments of the sides meet the curves of the ends.

Figure 1: Four extreme points in a two-dimensional convex set that are not vertices.

For the purposes of the subsequent theorem and definitions, let us define the following
notation for a polyhedron:

Q∗ := {y ∈ IRm : AT
x y ≤ cx; A

T
wy = cw}

=: {y ∈ IRm : aT
j y ≤ cj, j ∈ Nx; a

T
j y = cj, j ∈ Nw}

Definition 2 I(y) := {j ∈ Nx ∪Nw : aT
j y = cj} and ra(y) := rank({aj : j ∈ I(y)})
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Figure 2: A geometric representation of the four basic solutions (dots) and two basic feasible
solutions (boxed) of an LP problem with one equality and four inequality constraints on two
variables.

Definition 3 Call y ∈ IRm a basic solution of Q∗ if Nw ⊆ I(y) and ra(y) = m. y is a basic
feasible solution of Q∗ if it also lies inside Q∗. (See Figure 2).

Since there are only a finite number of constraints defining Q∗, there are only a finite number
of ways to choose I(y), and if ra(y) = m then y is uniquely determined by I(y). So there are

at most
(
|Nx∪Nw|

m

)
basic solutions.

Theorem 1 (Characterization of Vertices). Let Q∗ be defined as above. The following
are equivalent:
(a) y is a vertex of Q∗.
(b) y is an extreme point of Q∗.
(c) y is a basic feasible solution of Q∗.

Proof: We first prove that (a) ⇒ (b). Let y be a vertex of Q∗ and suppose by way of
contraposition that y is not an extreme point of Q∗. So ∃s, t ∈ Q∗, s 6= t, 0 < λ < 1 such that
y = (1− λ)s + λt. Since y is a vertex, ∃f ∈ IRm such that

argmax{fT z : z ∈ Q} = {y} ⇒ fT s < fT y, fT t < fT y
⇒ (1− λ)fT s + λt < fT y.

But we also have
fT y = fT [(1− λ)s + λt]

= (1− λ)fT s + λfT t,
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which is a contradiction. So y must be an extreme point.
We now prove (b) ⇒ (c). Let y be an extreme point of Q∗ but suppose by way of contrapo-

sition that y is not a basic feasible solution. For y to be an extreme point of Q∗, it must lie in
Q∗ and therefore Nw ⊆ I(y). The only possible way y could not be a basic feasible solution is
for ra(y) < m, and hence there is a direction vector 0 6= d ∈ IRm with aT

j d = 0 for all j ∈ I(y).
So

aT
j (y + αd) = { aT

j y = cj, ifj ∈ I(y);
aT

j y + αaT
j d < cj + αaT

j d, otherwise.

So for some ε > 0,∀|α| ≤ ε, y + αd ∈ Q∗. So y can be written as a convex combination of
two other points of Q∗, namely y = y+εd

2
+ y−εd

2
, which contradicts y being an extreme point.

Therefore y must also be a basic feasible solution of Q∗.
Finally, we prove (c) ⇒ (a). Let y be a basic feasible solution of Q∗, which implies

ra(y) = m. By definition aT
j y = cj for j ∈ I(y), and therefore (

∑
j∈I(y) aj)

T y =
∑

j∈I(y) cj.
Because ra(y) = m, y is the unique point in Q∗ that satisfies this equation. Let f =

∑
j∈I(y) aj.

∀z ∈ Q∗, j ∈ I(y) : aT
j z ≤ cj, which implies fT z ≤ ∑

j∈I(y) cj. But as we have shown, fT y
satisfies this constraint with equality, and therefore y maximizes fT z over Q∗. And because y
uniquely satisfies with equality, it uniquely maximizes fT z, and so y is by definition a vertex. ut

The following two corollaries are given without proof.

Corollary 1 Any polyhedron Q has only a finite number of vertices. Specifically, if Q is defined
by n constraints on m variables then it has a maximum of

(
n
m

)
vertices.

Corollary 2 The set of basic feasible solutions does not depend on the representation of Q.

We now prove the claim delivered without proof at the end of the last lecture – that any
bounded polyhedron is a polytope. We must first give a concrete definition to the notion of
boundedness.

Definition 4 A convex set Q ⊆ IRn is bounded if for some M > 0, ‖y‖ ≤ M for all y ∈ Q.
A convex set is pointed if it does not contain any line {y + αd : α ∈ IR} for 0 6= d ∈ IRn,
y ∈ IRn.

Theorem 2 (Representation of Bounded Polyhedra). A bounded polyhedron Q is the
set of all convex combinations of its vertices and is therefore a polytope.

Proof: Since Q is convex and contains all of its own vertices, it necessarily contains all
convex combinations of its vertices. So it only remains to show that every y ∈ Q can be
written as a convex combination of vertices of Q. We will prove this result through induction
on m− ra(y).

Basis: Let m− ra(y) = 0. Then ra(y) = m and since y ∈ Q, y is a basic feasible solution,
and therefore a vertex, of Q.
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Inductive Step: Suppose y ∈ Q can be written as a convex combination of vertices when
m−ra(y) < k for some k > 0, and consider ȳ ∈ Q with ra(ȳ) = m−k < m. Choose a direction
vector 0 6= d ∈ IRm such that aT

j d = 0 for j ∈ I(ȳ). Since Q is bounded, there exist α < 0, ᾱ > 0
such that ȳ + αd lies in Q whenever α ≤ α ≤ ᾱ and outside Q otherwise. Geometrically, this
is equivalent to moving positively and negatively in direction d until we run into a constraint.
Now consider ȳ + αd and ȳ + ᾱd. We can write ȳ = ᾱ

ᾱ−α
(ȳ + αd) + −α

ᾱ−α
(ȳ + ᾱd) .

Therefore ȳ is a convex combination of two points in Q. Let us look more closely now at
ȳ + ᾱd. We defined ᾱ such that ȳ + ᾱd, in addition to holding with equality to all constraints
where ȳ held with equality, it was also tight to a constraint to which ȳ was not tight, say
aT

k z ≤ ck. This means that aT
k ȳ < ck and aT

k (ȳ + ᾱd) = ck. Since ak /∈ span{aj : j ∈ I(ȳ)}, we
have

ra(ȳ + ᾱd) = rank{aj : j ∈ I(ȳ + ᾱd)} ≥ rank({aj : j ∈ I(ȳ)} ∪ {ak}) > ra(ȳ) .
So m − ra(ȳ + ᾱd) < k; hence ȳ + ᾱd is a convex combination of the vertices of Q. The

same argument holds for ȳ + αd, and so ȳ itself is a convex combination of the vertices of Q.
This completes the induction step, and we have proved the theorem. ut
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