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Mathematical Programming Lecture 3
OR&IE 630, Fall 2005 September 01, 2005
Instructor: Mike Todd Scribe: Yogeshwer Sharma

It is the theory that decides what can be observed [or proved].
—Albert Einstein
A test of a good theory is that the number of theorems in it should be at least twice the

number of definitions.
—Source unknown (quoted by Mike Todd)

1 Some forms of linear programs

In its full generality, linear programming concerns optimizing a linear function over linear
constraints (equalities and inequalities). But restricting the program to equalities or
inequalities only does not reduce the power of linear programs. In this section we will see
some of the more-used forms of linear programs and why they solve the linear program-
ming problem in general.

1.1 LP in standard form

In its “‘standard” form, linear programming concerns itself with miminizing a linear func-
tion with equality and non-negativity constraints. More precisely, in standard form, a

linear program looks like the following.
minimize c¢'z (minimization)
subject to Az = b (equality constraints)
x > 0 (non-negativity constraints).
The dual of such an LP can be written in the following form,
maximize b'y
subject to ATy < ¢ (inequality constraints)
Yy unrestricted  (no sign constraints on variables).

1.2 LP in symmetric dual form

In the symmetric dual form, an LP problem is a minimization problem with inequality
and non-negativity constraints. This is called the symmetric the dual form because dual of

such an LP also has inequality and non-negativity constraints.
minimize c¢'x
subject to Ax > b

T > 0.

And the dual of an LP problem in this form can be expressed as
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maximize b'y
subject to ATy
Yy
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1.3 Conversion from one form to another

In this section, we will consider the problem of converting one form of LP to another. In
this process, it will also be clear that LP in standard or symmetric dual form can solve
the linear programming problem in full generality. In Section 1.3.1, we will see the reduc-
tion from Linear Programming to Linear Programming in standard form.

Unrestricted variables to non-negative variables. If a variable (say z;) is unre-
stricted, then we can replace each occurance of xz; by s —¢ and add non-negativity
constraints on s and t: s >0, > 0.

Equality to inequality constraints. Equality constrints can be changed to
inequality constraints by putting both greater than and less than constraints. For
example, a'x =b can be changed to a'z <b and a'x > b.

Inequality constraints to equality constraints. Inequality constraints can be
changed to equality constraints by introducing slack variables. For example, con-
sider the following two constraints

aTx

/T
a T

b
b'.
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We introduce two ‘‘slack” variables which correspond to how much is the slack

(difference) between a 'z and b.
a'z+s = b
s >0
aTr—s =V
s' > 0.

Here, s is called a slack variable and s’ is called a surplus variable.

T

Maximization problem to minimization problem. Maximize c¢'x can be trans-

formed to minimize —c¢'z.

1.3.1 Transformation to LP in standard form

We consider the problem of converting LP in general form to LP in standard form. Let us
call the original LP problem (LP).

1. First of all, if (LP) is a maximization problem, we multiply the objective function
by — 1 and make it a minimization problem.
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2. As the next step, we change all the inequality constraints to equality constraints by
introducing slack or surplus variables. This might introduce some non-negativity
constraints too.

3. Finally, we change any unrestricted variables to non-negative variables by the trick
mentioned in the last subsection.

2 Geometry of linear programs

We switch gears to a very interesting way of looking at LP now and consider the geometry
of linear programs in more detail. We will look at subsets of R™ from two different angles
and derive connections between them. The two ways of looking at the sets are the fol-
lowing. Let S CR™

1. S can be looked as being generated by some finite number of points by taking var-
ious ‘“‘combinations” of them. For example, R? can be generated by (1;0) and (0;1)
by taking all linear combinations. (We will explain the meaning of linear combina-
tion in the coming sections.)

2. S can also be specified by finite number of constraints, which every point in S must
satisfy. For example, the non-negative quadrant of R? can be written as the subset
of R? satisfying #; >0 and x5 > 0.

But, what type of combinations of points we can take? What kind of constraints are
allowed? Let us define some concepts now which will allow us to answer these questions.

Definition 1. Let z1, xo, ..., T be arbitrary k vectors in R"™, and A\, Ag, ..., A\ € R. A
vector x defined as

k

r = )\1$1+/\2$2+"'—|—)\k$k:2 A
=1

is called a linear combination of the vectors x;,1=1, ..., k.

1. A linear combination is called an affine combination if Ele Ai=1.

2. A linear combination if called a convex combination if all A\; sum to one and they

are all non-negative. That 1s, Zle Ai=1 and X\; >0 for all 1.

3. A linear combination if called a conical combination (or non-negative combination)
iof all the \; are non-negative. That is, \; >0 for all 1.

4. A linear combination if called a positive combination if all the \;’s are positive.
That s, A; >0 for all 1.

To make the above ideas more concrete, we consider a simple example and consider var-
ious combinations.
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Example 2. Let us consider the following two vectors in R3: z; = (1;0;0) and z, = (0; 1;
0). The set of all linear combinations of z; and 3 is {z € R3|z3 =0}, a plane in R3. The
set of all affine combinations is the line passing through the tip of the two vectors
(through points (1; 0; 0) and (0; 1; 0)). The set of all convex combinations is the part of
that line falling between the two points (For any point x, A\; and )\, are related to the dis-
tances of the point from x5 and x;). The set of all conical combinations is the non-nega-
tive quadrant of the plane z3=0, or more formally, it is the set of all points x = (z1; z2; x3)
satisfying x; > 0,29 > 0, 23=0. The set of all positive combinations is the same set as that
of conical combinations except for leaving out the boundary. More precisely, it is the set
of all points (z1; z2; x3) satisfying x; >0, z2> 0, 23=0.

Comment about duality In the coming lecture, we will see a lot of duality in the sense
that the same set (subspace) can be written as being generated by finite number of points
by taking all combinations of some sort or it can also be written as specifying the con-
straints that must be satisfied in order for a point to be in the set (subspace). In the
above example, we saw many such examples. All the sets were generated by taking dif-
ferent kinds of combinations for two points and we also described the set by the set of
constraints.

We see that the names of the combinations corresponds to the geometric picture that
is generated by the particular kind of combination. For example, the set of all conical
combinations is a cone. The set of all convex combinations is always a convex set (in par-
ticular, the convex hull of the original points). For drawing the correspondence for linear
and affine combination, we define some subspaces below.

We introduce the idea of subspace now.

Definition 3. A set S C R" is called a linear subspace if it is closed under taking the
linear combinations of pairs of its elements. More precisely, S is called a linear subspace if
for any vectors x,ye S and A\, pe R, \x + puy € S.

Similarly, S is called an affine subspace (or affine manifold or flat) if it is closed under
taking affine combinations of any pair of its elements.

S is called a convex set if it is closed under taking convexr combinations of pairs of its
elements and it is called o convex cone if it is closed under taking positive combinations of
pairs of its elemins.

2.1 Null space and range space of A € R™*"

Let A be an m x n real matrix (A € R™*"), b be a real m-dimensional column vector and
¢ be a real n-dimensional column vector. The null space of matrix A is defined to be set of
all vectors that are mapped to 0 when premultiplied by A. More precisely, the null space
of matrix A (denoted by N(A)) is

N(A) = {zeR"|Az=0}
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The range space of a matrix A is defined to be set of all vectors which can be obtained by
premultiplying some vector by A. More formally, range space of a matrix A (denoted by
R(A)) can be written as

R(A) = {AylyeR"}.

Definition 4. (Hyperplane and half-space) If 0£a€R", 3 € R, then the set

{zlaTz=p}
1s called a hyperplane, and the set
{zla'z < B}
is called a (closed) halfspace.
Remark 5. A half space {z|a'z < (3} is a convex set. This can be easily verified by

taking two arbitraty vectors satisfying the inequality and showing that any convex combi-
nation of them also satisfies the inequality.

linear subspace linear combinations
affine subspace . affine combinations .
Theorem 6. A Wi P contains all 1 o of any (finite)
convezr set convexr combinations
convexr cone positive combinations

number of its vectors.

Note that the theorem does not follow from the definitions. Linear subspace (respec-
tively affine subspace, convex set, convex cone) is defined to contain all linear combina-
tions (respectively affine combinations, convex combinations, positive combinations) of
any two of its vectors. The property we want to prove holds for all combinations of any
number of vectors, not just two of them.

Proof. The proofs for all the cases are analogous. We will prove the claim only for
convex sets.

Consider an arbitrary convex combination of finitely many vectors of a convex set S.
Let this be Az1 4+ --- + Agxg. Here Y A\;=1 and A; > 0. We want to prove the Z \iZi €
S.

=1

We will prove the claim by induction on k. If k=1, the combination is the point itself
and the point trivially belongs to the set. If £ = 2, then the combination is contained in
the convex set by definition.

If £ > 2, we can write the above combination as (without loss of generality, assume
that A <1, otherwise we can rename the vectors)

k k-1

Z Wy = 1_/\k Zl_z xz+)\kxk

=1

Call this vector y
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By the induction hypothesis, the underbraced vector belongs to the convex set S (it is a
convex combination of & — 1 vectors). Call this vector y € S. Now, z = (1 — A\p)y + ATk
which is written as convex combination of two vectors in S again. By definition, a convex
set contains convex combinations of all of its pairs, so x € S, proving the claim. O

linear subspaces

affine subspaces
conver sets
CONVET CONES

Theorem 7. An arbitraty interesection of
linear subspace
affine subspace
conver set
CONVeET cone

again S G

Proof. The proofs are analogous for all four cases. We will prove it for convex cones.

Let (Cj)ier be an arbitrary collection of convex cones and C' = ), g i f C= 0, the
claim follows because the empty set if a convex cone by definition (There are no points to
take combinations). If C' is a singleton set, the claim again follows. So, assume that |C'| >
2.

We will prove that C' contains all positive combinations of any two of its points. Let x,
yeC and Az + py, A >0, £ >0 be an arbitrary positive combination. For every i, z and y
are contained in C; (because C' is the intersection of all C;’s). Therefore, \x + py € C; for
all 1 € I (because, Cj is a convex cone for all i € I). Hence, Az + py € (),.; Ci = C, proving
the claim. O

2.2 Two views of the same set

In the coming lectures, we will exploit the connection between two views of looking at the
same subset of R". These two views are the following.

Let S C R™ For many such sets of interests, we can find a set 7' C R™ such that every
point in S can be written as * -combination of points in 7" where x stands form linear,
affine, convex, conical or positive. If we can find a finite 7', then the set S is said to be
finitely generated by 7. This is one view of looking at a set. In this case, we only have to
look at T" to get all the information about S. (This is good because T is a finite set while
S could have been a large or even infinite set.) An example: The non-negative quadrant in
R2 can be written as all conic combinations of two points (1,0) and (0, 1).

Another view of looking at the set is by considering the constraints which must be sat-
isfied by all points in the set. For example, the non-negative quadrant in R? can be
written as the set of all points satisfying the following two constraints:

1'120,1'220-

Remark 8. Any closed convex set can be written as the intersection of half-spaces and
also as convex combinations of some number of points. Are these two numbers (number of
half-spaces and number of points) equal?

For example, consider a circle C'. Call the interior and boundary of C' combined as D
(for disc). Any point of D can be expressed as a convex combination of points in C. D
can also be written as intersection of infinitely many half-spaces, one each for a point in C'
(see Figure 1).
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Figure 1. A circle can be written as the intersection of infinitely many half-spaces. The lines with arrows
on them show the half-space.

Is the cardinality of the set of half-spaces and the set of points equal? In this case, it is
equal, as both are equal to the cardinality of the real number set R.

But in genaral, this is not the case. The easiest example is the cube in three dimen-
sions. It requires eight points for it to be written as a convex combination of them, but six
half-spaces suffice, one for each face of the cube.

In general, the number of points can be exponentially larger than the number of half-
spaces or vice versa. Consider the hypercube in n dimensions. It requires 2" points but
only 2n half-spaces suffice. Conversely, the Li-cube

{z e R[], <1}

requires only 2n points but 2™ half-spaces.

3 Polyhedra and polytopes

Definition 9. A set S CR" is called a polyhedron if it can be written as
{yeR"|Ay <c}
for some A€ R™*™ and c e R™.

Corollary 10. A polyhedron is a convex set.

Proof. The proof is straightforward. A polyhedron is the intersection of finitely many
half-spaces, each of which is a convex set. From Theorem 7, it follows that a polyhedron is
a convex set. (
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Definition 11. A set S CR" is called a polytope if there exists a finite number of points
1, ...,k € R™ such that S is the set of all convexr combinations of x1..., T.

Both polytopes and polyhedra are convex sets. In lower dimensions, just by visualiza-
tion their geometry looks similar. Can we represent a polytope as a polyhedron? How
about the other way? Is every polytope a polyhedron? Is every polyhedron a polytope?
Let us consider the following two questions regarding polyhedra and polytopes.

1. When is a polyhedron a polytope?
2. When is a polytope a polyhedron?

The answer to the first question is almost always. If a polyhedron is bounded, then it can
be written as a polytope too. But, if it is unbounded, as in Figure 2, it cannot be repre-
sented as a polytope.

Figure 2. A polytope is also a polyhedron, but a polyhedron might not be a polytope. This is an
example of a polyhedron, which cannot be expressed as a polytope.

The answer to the second question is always. But, in general, the number of half-
spaces required to represent a polytope may be exponential in the number of points
required to represent the polytope.



