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Last time we considered
maxy bT y

AT y ≤ c,
(1)

the problem of primary interest, and were led to the related problem

minx cT x
Ax = b,

x ≥ 0.
(2)

We call this the dual of the first problem, and to be precise, call the first problem the primal.
What if we had started with the second problem? An equivalent problem (equivalent in the
sense that the feasible regions and optimal sets are the same, while the optimal values are of
opposite signs) is

max
x

(−c)T x

Ax ≤ b,

−Ax ≤ −b,

−x ≤ 0,

which is of the first form, and applying our usual rules its dual would be

mins,t,u bT s − bT t
AT s − AT t − u = −c

s ≥ 0, t ≥ 0, u ≥ 0,

or
mins,t,u −bT (t− s)

AT (t− s) + u = c
s, t, u ≥ 0.

Now, even if s and t have nonnegative components, t − s can have components of any sign;
conversely, any y ∈ IRm can be written as t − s with s and t nonnegative, e.g., by setting
t = y+ := max{y, 0} and s = (−y)+ = max{−y, 0}, with “max” interpreted componentwise.
Further, AT y + u = c for some nonnegative u iff (if and only if) AT y ≤ c; so this dual problem
can be rewritten as

min
y

−bT y

AT y ≤ c,

and, switching the sign of the objective function yet again, we get the “equivalent” problem
(1) again. So, at least modulo these equivalences, the dual of the dual is the primal.
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More intuitively, suppose we wish to obtain lower bounds for the optimal value of (2).
Because we have equality constraints Ax = b, we can allow arbitrary signs for the components
of y and deduce that

(AT y)T x = yT Ax = yT b = bT y

for any feasible solution x to (2). We might require that AT y = c, but this is overly limiting
(especially as A is m×n with typically m < n: there may be no solutions to these equations!).
Instead, since feasible x’s are nonnegative, we can instead ask just that AT y ≤ c: then

cT x ≥ (AT y)T x = yT Ax = yT b = bT y

for any feasible solution x to (2) and any y with AT y ≤ c. Hence the best such bound is
optained from a solution to (1). Notice that the chain of inequalities above is just the reverse
of that used in proving the weak duality result last time. The result is the same, but the
interpretation is different.

More generally, suppose we have a minimization problem with some equations and some
greater-than-or-equal-to constraints, and some nonnegative and some unrestricted variables:

minx,w cT
x x + cT

ww
(P ) Axx + Aww = b,

Āxx + Āww ≥ b̄
x ≥ 0, w unrestricted.

(We could also allow less-than-or-equal-to constraints and/or nonpositive variables, but these
are easily converted to greater-than-or-equal-to constraints and nonnegative variables by mul-
tiplying by −1.)

To get a lower bound on the objective function values of feasible solutions to (P ), we can
take arbitrary multiples of the equality constraints and nonnegative multiples of the greater-
than-or-equal-to constraints to get

(AT
x y + ĀT

x z)T x + ((AT
wy + ĀT

wz)T w ≥ bT y + b̄T z

whenever z ≥ 0. Now x ≥ 0, so we only need AT
x y + ĀT

x z ≤ cx, but w is unrestricted, so we
need AT

wy + ĀT
wz = cw. So, whenever (y, z) satisfies

AT
x y + ĀT

x z ≤ cx,
AT

wy + ĀT
wz = cw,
z ≥ 0,

we have
cT
x x + cT

ww ≥ bT y + b̄T z

for every feasible (x, w) to (P ). To obtain the best possible bound, we choose (y, z) to maximize
the right-hand side above, and are led to

maxy,z bT y + b̄T z
(D) AT

x y + ĀT
x z ≤ cx,

AT
wy + ĀT

wz = cw,
z ≥ 0,
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which we define to be the dual of (P ). Notice that for a primal minimization problem, we
have the following correspondences:

• the dual problem is a maximization problem;

• for every nonnegative primal variable there is a less-than-or-equal-to dual constraint;

• for every unrestricted primal variable there is an equality dual constraint;

• for every equality primal constraint there is an unrestricted dual variable;

• for every greater-than-or-equal-to primal constraint there is an nonnegative dual variable;

• the objective function coefficients of the dual come from the right-hand sides of the primal
constraints;

• the right-hand sides of the dual constraints come from the objective function coefficients
of the primal; and

• the coefficient matrix of the dual constraints is the transpose of that of the primal con-
straints.

We have proved above

Theorem 1 (Weak Duality) For every feasible solution (x, w) for (P ) and every feasible solu-
tion (y, z) for (D), we have

cT
x x + cT

ww ≥ bT y + b̄T z.
ut
We could instead start with a maximization problem with some less-than-or-equal-to con-

straints and some equality constraints, and some unrestricted variables and some nonnegative
variables. We would view this as our primal problem, but it would have exactly the form of
(D) above. To obtain an upper bound on the objective function values of feasible solutions, we
would introduce nonnegative multipliers (x) for the less-than-or-equal-to constraints and unre-
stricted multipliers (w) for the equality constraints. Proceeding exactly as above, we would be
led to constraints on these multipliers, and to obtain the best possible bound we would arrive
at a minimization problem, which would be exactly (P ) above. So we would then define (P )
to be the dual of (D). As an immediate consequence of these definitions, we would find

The dual of the dual is the primal.

Note that, when the primal problem is a maximization problem, we have the following corre-
spondences:

• the dual problem is a minimization problem;

• for every unrestricted primal variable there is an equality dual constraint;

• for every nonnegative primal variable there is a greater-than-or-equal-to dual constraint;
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• for every less-than-or-equal-to primal constraint there is an nonnegative dual variable;

• for every equality primal constraint there is an unrestricted dual variable;

• the objective function coefficients of the dual come from the right-hand sides of the primal
constraints;

• the right-hand sides of the dual constraints come from the objective function coefficients
of the primal; and

• the coefficient matrix of the dual constraints is the transpose of that of the primal con-
straints.

Let us consider an example of such a “mixed” linear programming problem.
Robust regression: In fitting problems, we choose the parameters of a model to best

fit some data. Most common is linear least squares (LLS), where w is chosen to minimize
‖Aw− b‖2, the Euclidean norm of the residuals: if the model was a perfect fit, the parameters
would satisfy Aw = b, but because of noise, incorrect model, measurement errors, etc., this is
not possible. For the same reason, A is usually m×n with m > n, so this is an overdetermined
linear system. The solution to the LLS problem can be written down in closed form, and there
are efficient and accurate ways to compute the solution.

Robust regression uses a different objective function to minimize: note that LLS squares
the residuals, so is sensitive to outliers, which may be undesirable if there are possible large
measurement errors. Here we consider L1-regression. The L1-norm (or 1-norm) of a vector is
the sum of the absolute values of its components: ‖v‖1 :=

∑
j |vj|. Note that this is a piecwise-

linear function — it is linear in each orthant, but the derivative jumps when you cross any
coordinate hyperplane.

So we want to minimize ‖Aw − b‖1. To do this, we use a clever modelling trick of linear
programming: the absolute value of any real number σ can be represented as the minimum of
τ + υ over all nonnegative τ and υ with τ − υ = σ Note the similarity to how the unrestricted
variable y was represented by the difference of the nonnegative variables t and s above. If we
do this trick with every component of the residual Aw − b, we write this as x+ − x−, say, with
x+ and x− nonnegative vectors (of dimension m), and minimize the sum of all the x variables.
Using e to denote a vector of ones of appropriate dimension, here m, we arrive at

minw,x+,x− eT x+ + eT x−
(P ) Aw − x+ + x− = b,

x+, x− ≥ 0.

This has the same optimal value and the same optimal w’s as the original problem
min{‖Aw − b‖1}.

Problem (P ) is a minimization problem with equality constraints and both unrestricted and
nonnegative variables. Its dual will be a maximization problem with unrestricted variables y
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subject to both equality and inequality constraints. Using our rules, we obtain

maxy bT y
(D) AT y = 0,

−y ≤ e,
y ≤ e.

The feasible region of the dual is the intersection of a subspace {y ∈ IRm : AT y = 0} and the
set {y ∈ IRm : −e ≤ y ≤ e} = {y ∈ IRm : ‖y‖∞ ≤ 1}, where the L∞-norm (or ∞-norm) of a
vector is the largest absolute value of its components. This norm is dual to the 1-norm in the
sense that

‖v‖∞ = max{uT v : ‖u‖1 ≤ 1} and ‖u‖1 = max{uT v : ‖v‖∞ ≤ 1}.

Note that the dual LP problem to the LP problem corresponding to minimizing the 1-norm
involves constraints on the dual norm! Also, the primal tries to express b as a linear combination
of the aj’s, while the dual looks for a vector orthogonal to all the aj’s but with a large inner
product with b.

Let us look at a particular instance:

Example 1 Let A =

 4 −2
1 −3
3 −4

 and b =

 6
3
9

. We would like w = (w1; w2) to lie on three

lines, but they don’t meet in a point. So we want the best L1 fit.
The corresponding primal problem is

min x1 +x2 +x3 +x4 +x5 +x6

4w1 − 2w2 −x1 +x4 = 6,
(P ) w1 − 3w2 −x2 +x5 = 3,

3w1 − 4w2 −x3 +x6 = 9,
x ≥ 0,

with dual

max 6y1 + 3y2 + 9y3

4y1 + y2 + 3y3 = 0,
(D) −2y1 − 3y2 − 4y3 = 0,

−1 ≤ y1 ≤ 1, −1 ≤ y2 ≤ 1, −1 ≤ y3 ≤ 1.

Here it is easier to picture the dual problem. The two equality constraints each define planes
in 3-space, and their intersection is the line of all y with y1 : y2 : y3 = 1 : 2 : −2. The
other constraints define a cube of side 2 centered at the origin, so the feasible region is the
line segment from (−1/2;−1; 1) to (1/2; 1;−1). It is then easy to see that y = (−1/2;−1; 1)
is optimal with dual objective function value 3. To check this, note that w = (1;−1) with
x = (0; 1; 0; 0; 0; 2) is feasible in (P ), with primal objective function value 3. By our sufficient
conditions for optimality (Corollary 1 last time), we know both are optimal.
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Figure 1: The three “fitting” lines for Example 1.

Figure 2: The feasible region for the dual for Example 1.

Here are representations, in w- and y-space, of these problems. Note that (D) can be
viewed, in w-space, as finding a point where appropriate forces towards the three lines are in
equilibrium.

Note that the line of points satisfying the equality constraints of (D) has by coincidence
hit two of the bounding hyperplanes simultaneously at each end, so these two solutions are
degenerate. Also, there are several optimal solutions to (P ): as well as w = (1;−1) there are
(6/5;−3/5) and (3/5;−9/5) and all points in between.

Here are two special forms of dual problems we will be considering. First, the minimization
problem (2) with (all) equality constraints in (all) nonnegative variables is called the LP problem
in standard form. Second, if we use (all) inequality constraints in (all) nonnegative variables,
we get the symmetric dual problems

min{cT x : Ax ≥ b, x ≥ 0} and max{bT y : AT y ≤ c, y ≥ 0}.

6


