- 1. a) Let us consider the following modified cutting-stock problem. Instead of a demand for exactly b_i rolls of width w_i , the customer will accept any amount between $.9b_i$ and $1.1b_i$. Also, a total of M large rolls of width W are available. Suppose the profit for each roll of width w_i sold is p_i . If a_j , j = 1, ..., N, denote the possible cutting patterns, formulate an integer linear programming problem to maximize profit while staying within the sales limits and respecting the limit on large rolls.
- b) Explain how you could use column generation to solve the linear programming relaxation of the problem in (a).
 - 2. Suppose you wish to solve the (large-scale) linear programming problem

Think of this as the problem of a corporation with two divisions, where the corporate variables w impact the constraints of each division.

- a) Take the dual of (P), and discuss how you would apply Dantzig-Wolfe decomposition to it. In particular, derive the subproblems that would be solved at each iteration and interpret their duals.
- b) Now consider (P) itself, and write the constraints as two separate systems, one involving x_1 and a new vector w_1 and the other x_2 and a new vector w_2 , with a constraint linking w_1 and w_2 . The result should be a problem in block-angular form, with a "small" number of linking constraints. Discuss how you would apply Dantzig-Wolfe decomposition to this. In particular, derive the subpreoblems that would be solved at each iteration.
- c) Compare the "resource-directed" decomposition of (a) (why is it called this?) and the "price-directed" decomposition of (b) (why is it called that?).
- 3. The standard simplex in \mathbb{R}^m is the set $S^m := \{x \in \mathbb{R}^m : e^T x \leq 1, x \geq 0\}$, where $e \in \mathbb{R}^m$ is the vector of ones.
- a) Consider the simplex $\{x \in \mathbb{R}^m : a^Tx \leq 1, x \geq 0\}$, where $a \in \mathbb{R}^m$ is a positive vector. Show that there is a nonsingular linear transformation taking this into S^m . (In fact, there is a nonsingular affine transformation taking any m-dimensional simplex in \mathbb{R}^m into S^m .)
- b) Consider the hyperplane $\{x \in \mathbb{R}^m : e^T x = m/(m+1)\}$ through the centroid (center of gravity) $\bar{x} := e/(m+1)$ of S^m . Show that this hyperplane cuts the simplex into two pieces, with the piece containing the origin having volume $(m/(m+1))^m$ times that of S^m . Show that this is at least $\exp(-1)$.

In fact, any hyperplane through the center of gravity of any convex body (compact subset with nonempty interior) of \mathbb{R}^m cuts it into two pieces, and each has volume at least $(1-\exp(-1))$ times that of the body itself. (You don't have to prove that!) This constant volume reduction compares to the much slower reduction in the ellipsoid method.