
OR 630: Mathematical Programming I. Fall 2005.

Comments on the final exam.

1. a) Let x̂ be the solution to (1) with all components positive, and let B be any basis
matrix for A, which is given to have rank m. Then x̂B = B−1b−B−1Nx̂N > 0. Define x̂(ε) by
x̂N (ε) := x̂N and x̂B(ε) := B−1b(ε)−B−1Nx̂N . Then x̂N(ε) > 0, Ax̂(ε) = b(ε), and x̂B(ε) → x̂B

as ε → 0. So for all sufficiently small positive ε, say for 0 < ε ≤ ε̄, x̂(ε) is positive and hence
feasible for (2). (Note: it is possible that all basic feasible solutions to (1) are degenerate, but
that such a x̂ exists: e.g., consider the assignment problem.)

b) Consider every basis matrix B such that the corresponding basic solution to (1) is not

feasible. For any such B, there is some index i such that (B−1b)i is negative, so there is some
positive ε̂B such that (B−1b(ε))i is negative for 0 < ε ≤ ε̂B. There are only a finite number of
basis matrices, so only a finite number of such B’s: let ε̂ > 0 be the minimum of these ε̂B’s.
Then for 0 < ε ≤ ε̂, if B−1b(ε) is nonnegative, then B cannot be any of these infeasible bases,
so B−1b is nonnegative also.

c) x̄ is an extreme point of the feasible region of (1), so it is a vertex of this region, and there
is some c so that x̄ is the unique solution of the optimization problem min{cT x : Ax = b, x ≥ 0}.
Then there is an optimal dual solution, say ŷ.

Now choose any 0 < ε ≤ ε̃, where ε̃ := min{ε̄, ε̂}, and consider the optimization problem
min{cTx : Ax = b(ε), x ≥ 0}. By (a) this has a feasible solution, and ŷ is a feasible solution to
its dual, so it has an optimal solution, and an optimal basic feasible solution, say corresponding
to the optimal basis matrix B. Then the corresponding dual solution ȳ has cB − BT ȳ = 0,
cN − NT ȳ ≥ 0. By (b), the basis matrix B corresponds to a basic feasible solution, say x̂, to
(1). Then x̂ and ȳ are feasible for the original optimization problem and its dual, and satisfy
complementary slackness, so x̂ is optimal and hence equal to x̄. Hence B is the desired basis
matrix.

(Note: (a) to (c) show the relationship between basic feasible solutions to (1) and to (2),
and this can be used to show that the maximum diameter of a polyhedron with certain m and
n can be realized by one with no degenerate basic feasible solutions.)
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2. We want feasible x and (y, s) to the perturbed (P) and (D) with the duality gap xT s
“small.” Note that the solutions given could have been obtained by the simplex method (before
completion, maybe), the ellipsoid method, or an interior-point method.

a) If cj becomes cj + ∆, we can correct feasibility in the equations by changing sj to
s̄j := sj +∆, keeping x and y unchanged. Then we are still feasible as long as s̄ is nonnegative,
i.e., as long as ∆ ≥ −sj, and the new duality gap is xT s̄ = xT s + xj∆ ≤ ε + xj∆.

So we have ε-optimal solutions for −sj ≤ ∆ ≤ 0 (−sj ≤ ∆ if xj = 0), and (ε + η)-optimal
solutions for 0 ≤ ∆ ≤ η/xj.

Note that xjsj ≤ ε, so if xj > 0, ε/xj ≥ sj. So we get (2ε)-optimal solutions for −sj ≤ ∆ ≤
sj, a reasonable range if sj is large.

b) Now Âx̂ ≥ b, x̂ ≥ 0 is converted to Ax := [Â,−I](x̂; t) = b, x ≥ 0. If bi becomes
bi + ∆, we can correct feasibility in the equations by changing ti to t̄i := ti − ∆, keeping x̂,
y, and s unchanged. Then we are still feasible as long as ∆ ≤ ti, and the new duality gap is
x̄T s = xT s − ∆sk, where k := n − m + i.

So we have ε-optimal solutions for 0 ≤ ∆ ≤ ti (∆ ≤ ti if sk = 0), and (ε + η)-optimal
solutions for −η/sk ≤ ∆ ≤ 0.

Again, tisk ≤ ε, so if sk > 0, ε/sk ≥ ti. So we get (2ε)-optimal solutions for −ti ≤ ∆ ≤ ti, a
reasonable range if ti is large.

(So we can do some sensitivity analysis without basis matrices if we have both primal and
dual near-optimal solutions. We can’t do much if we only have a primal near-optimal solution
or a dual one, so primal-dual methods are more useful. Also, while it seems that a basis matrix
can give much more information, this can be unreliable if the basis is primal or dual degenerate.)

3. a) We need primal and dual feasibility and complementary slackness:

Ax = b, x ≥ 0;

AT y + s = c, s ≥ 0;

XSe = 0, or xjsj = 0, all j , or cT x = bT y, or cT x ≤ bT y.

b) The primal simplex method maintains primal feasibility and complementary slackness,
but relaxes dual feasibility (or just s ≥ 0) until optimality is reached. It strives for dual
feasibility.

The dual simplex method maintains dual feasibility and complementary slackness, but re-
laxes primal feasibility (or just x ≥ 0) until optimality is reached. It strives for primal feasibility.

Primal-dual path-following methods maintain primal and dual feasibility (strictly), but relax
the complementary slackness condition XSe = 0 to XSe ≈ µe for positive µ and strive for
µ = 0.
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4. a) Set x = e, y = 0, τ = 1, and θ = 1 and check all the equations and (strict) inequalities.
b) Let the dual variables be w, z, λ, and µ corresponding to the first, second, third, and

fourth (sets of) constraints. Then writing down all the appropriate constraints (with ≤ and
equality constraints) and nonnegativities, we find that the feasible region of the dual of (H) is
exactly the same as that of (H) if we identify w with x, z with y, λ with τ , and µ with θ. Then
the dual objective to maximize −(n+1)µ is equivalent to minimizing (n+1)µ, so that the dual
of (H) is completely equivalent to (H) itself (we say (H) is “self-dual”).

c) Since (H) and its dual have feasible solutions by (a) and (b), they both have optimal
solutions by strong duality. If (x, y, τ, θ) is optimal for (H), it is also optimal for its dual by
(b), and since the objective values are equal, (n + 1)θ = −(n + 1)θ so θ = 0. So the optimal
value is 0.

d) Let (x, y, τ, θ) be optimal with τ > 0 and θ = 0 by (c). Let x̄ := x/τ and ȳ = y/τ . Then
−AT y + cτ + 0 ≥ 0 implies AT y ≤ cτ and so AT ȳ ≤ c.

Next, Ax − bτ + 0 = 0 implies Ax = bτ so Ax̄ = b. Also, x ≥ 0 and τ > 0 imply x̄ ≥ 0.
Finally, −cT x + bT y + 0 ≥ 0 implies cT x ≤ bT y and so cT x̄ ≤ bT ȳ.
So x̄ is feasible in (P), ȳ is feasible in (D), and cT x̄ ≤ bT ȳ shows with weak duality that x̄

and ȳ are optimal in (P) and (D) respectively.
e) Now let (x, y, τ, θ) be optimal with τ = 0, −cT x+ bT y + ζ̄θ > 0 (and θ = 0 by (c)). Then

cT x < bT y, and so either cT x < 0 or cT x ≥ 0 and then bT y > 0.
In the second case we have −AT y + 0 + 0 ≥ 0 and bT y > 0, so AT y ≤ 0 and bT y > 0, which

shows that (P) is infeasible by the Farkas Lemma.
In the first case we have Ax + 0 + 0 = 0, x ≥ 0, and cT x < 0, so Ax = 0, which shows that

(D) is infeasible by a corollary to the Farkas Lemma.
(Note that variations of primal-dual interior-point methods can find (approximations to)

optimal solutions to (H) that either have τ > 0 or τ = 0 but −cT x + bT y > 0.)
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