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1. The direction d of the unbounded feasible ray is a solution to the system Az = 0,z > 0, Tz < 0,
which is system (IT'} of the alternative form of the Farkas Lemma. Thus, system (I') must be infeasible,
i.e., ATy < c is infeasible, i.e., the dual LP is infeasible. We must verify that the unbounded feasible
ray solves (I'). This is essentially done in the lecture notes from 9/27.
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2. Given a current basic feasible solution Z and reduced costs Ex, recall the equation that relates the
current objective function value { to the objective function value ¢ for any feasible solution
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If & > 0 then 7 is optimal. Otherwise some & < 0. Let a = —~G; = —min;’é > 0. Since the z;’s sum
to 1, we can do no better than increasing z; by 1, and hence decreasing ¢ by «. For
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3. Suppose you are solving a standard form LP problem with 7 variables from a given
basic feasible solution, and you know that every basic solution has at most one basic
variable zero. Show that the simplex method will either terminate or improve the objec-
tive function value within 7 iterations from any basic feasible solution, and deduce that
it will terminate in a finite number of iterations.

Suppose we are at a basic feasible solution, ¥. If &y > 0, then we are at an optimal
solution and can terminate. Otherwise the simplex method will choose some g for which
¢; < 0, and then find some p for which p; > 0. If no such p exists then the problem
is unbounded by the unboundedness criterion, and the simplex method will terminate.
If such a p exists where x, > 0, then we will move from one basic feasible solution to
another, along a direction where the objective function will improve. Otherwise we have
xp = 0, and we remain at the same basic feasible solution, but with p removed from the
basis and g added. We will now show that we will never be able to add p back into our
basis and remain at the same basic feasible solution.



We know before the change of basis we have
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In class we showed that after the change of basis
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so the updated reduction cost for p is simply
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Since we assumed that ¢; < 0 and that dp; > 0 then we know that the new reduced
cost for p must be positive. Therefore p will not be chosen to be placed back into the
basis on the next iteration of the simplex method. Furthermore, the above analysis holds
whenever
Gy =cp—ay7 20,

so once a variable has achieved a positive reduced cost it will never be chosen under any
new basis as long as we remain at the same basic feasible solution. Since every basic
feasible solution is assumed to have at most one degenerate variable, then at any basic
feasible solution there can be at most n — m + 1 variables with value 0, so after n — m +
1 iterations, if we remain at the same basic feasible solution then there will no longer
be any nonbasic variables with negative reduced costs. Thus we will be at an optimal
solution. Alternatively, if we ever move away from the current basic feasible solution then
we must have reduced our objective function value. It is also possible that we meet the
unboundedness criterion in one of these iterations. Regardless of the case, after n +m — 1
iterations we either improve the objective function value or else terminate the simplex
method. "



