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1. Here's another approach to proving strong duality. By the Fundamental Theorem
of LP, (D) is either infeasible, or unbounded, or has an optimal solution yx. The proof
technique we used takes care of the first two cases: so let us suppose (D) has an optimal
solution, with value {,. This means that there is no feasible solution to ATy < c,bTy >
Z+. This is like system (1) in the Farkas Lemma, except that the right-hand sides are not
all zero. Modify this system to get a new system like (II) that does not have a feasible
solution. Now apply the Farkas Lemma to show that (P) has an optimal solution with
value .

There is no feasible solution to the system, S): ATy < ¢,bTy > {s,s0the following system,
(§), also has no feasible solution.

ATy—cy < 0
bTy-—C*ﬂ > 0
p 20

To see this suppose there is a solution, (7, 1) to (8. 1f j = 0 then ATy < 0and b1y > 0,
S0
AT +ys) = AT+ ATy <0Fc=c

and
BT +ys) = BTG+ b7y > 048 = Cx

thus 7 + ¥« is a solution to (S) which is a contradiction. Alternatively, if fi # 0 then

AT(g/h) < ¢

~

T (9/h) > &

so §/1 is a solution to (S) which is again a contradiction. | 5 -
Therefore - - -
AT —Cci Y It ( 'bk - 1) X‘] v \ ,> C
<0, - 1
0 -1 7 {

has no solution, so by the Farkas Lemma we know

A IHE A

has a feasible solution. This implies that there is some feasible (x,w) such that

Ax = b
Tx+w = 0s -
cw > 0
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which means there is a feasible solution x to (P) with ¢Tx < Z.. However, we know
by weak duality that the objective function value of (P) cannot be less than the objective
function value for (D), so there is an optimal solution to (P) with value .. ]

2. (Strict Complementary Slackness) Suppose that (P) and (D) have optimal solutions
with objective values equal to (. '

(a) Show that the sets of optimal solutions of both (P) and (D) are convex sets.

(b) By considering the LP problem
mjn{-e;-rx cAx =b,—cTx > —Zs,x > 0},

show that either there is an optimal solution to (P) with its jth component positive,
or there is an optimal solution to (D) with its jth inequality holding strictly.

(c) Show that there are optimal solutions X and y, to (P) and (D) so that, with s, 1=
¢ — ATy,, s« + x. > 0. (These are so-called strictly complementary solutions.)

3p%. () Suppose x1 and x; are optimal solutions to (P), with cTx; = cTxy = {4 and Axy =
Axy = b, x1, %2 > 0. Then for any A with 0 < A < 1wehave

J TAx+(1-A)x) = Ao+ (A —A)c =20+ (1 -1 =0
A(Ax + 1- Axp) = AAx;+ (1—A)Axy = Ab+(1—=A)b=0b
Axp+(1—=A)x2 = 0,

since x1,x2,A, (1 —A) > 0. Therefore Axy + (1 — A)x, is an optimal solution to (P),

so the optimal solutions to (P) form a convex set.

Supgose y1 and y are optimal solutions to (D), with bTy; = bTyp = {« and ATy; <

¢, ATy, < c. Then for any A with0 < A < 1 we have
BT (Ays + (1= Aya) = ATy + (1 =ATy2 =A%+ (1= A)5x =0
AT+ (1=A)y2) = AATyp+(1- MNATy, < Ac+(1—A)c =g,

so Ay1 + (1 —A)ya is an optimal solution to (D), thus the optimal solutions to (D)
form a convex set.

;4 p‘{ (b) For a given j, if there is an optimal solution to (P) with its jth component positive
v then we are done. Otherwise assume there is no such solution, thus if x is optimal
in (P) then x; = 0. By considering

min{—e;:rx cAx=b,—cTx > —(sx > 0},

we observe that every feasible solution to this LP is an optimal solution to (P). Fur-
thermore, since every feasible solution to this problem must have x; = 0, and there
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is at least one feasible solution, the problem is optimized with objective function
value 0. Thus by Strong Duality we know that its dual

max{bTy — {xz : ATy —cz < —ej, 220},

is maximiged with objective function value 0. We know there must exist an optimal
solution (1/x, z) to this problem. If z, =0, then we know bTy, = 0and ATy, < —e;.
So for any optimal solution ¥ to (D)and any « > 0 we have

T (5 e AT T
AT(G+ay) = A F+aA ys SC—¢,

which implies 7 + ay is a feasible solution to (D) and ATy, < ¢j—1<1so the jth
inequality holds strictly. Also 7 + ay, is an optimal solution since

BT (7 +ays) = BTG +abys = Lo+ 0= 0w

Now if z, # 0 then let § = ys/2+. We have

ATy, —cz. < —¢j = ATy <c—ejfz*

so 7 is an optimal solution to (D), and in particular A;rrﬁ < ¢j—1<¢j 80 the jth
inequality holds strictly. z

(c) Foreachj =1,...,1, let x0) and y(f) be a pair of optimal solutions to (P) and (D)

respectively such that either x](.j ) > 0 or the jth inequality in (D) holds strictly for

y(j)d. We know that these solutions must exist for each j by part (b). Finally define x.
and v« as

by
I
M=

T
foy
% =%

Yo =

=

1

T

We know that both x, and y« are optimal solutions to (P) and (D) by part (a) since
each is a convex combination of optimal solutions. Thus for each j either ¢; —

A;-Fy* > 00r X4 > 0, where Aj is the jth column of A. Therefore if s, 1= ¢ — ATy*,

then s, + x« > 0.
n

3. We used the Farkas Lemma to prove strong duality. Suppose we had derived the
Strong Duality Theorem another way. Show how you could prove the Farkas Lemma

from it.




Theorem (The Farkas Lemma). Exactly one of (I) and (II) below has a feasible solution.
I. Ax=b, x>0,
I. ATy <0, bTy>0.

Proof. Once again we show that we cannot have solutions to both (I) and (I). If x is a
solution to (I) and y is a solution to (I1) then

0 < b7y =yTb = yT(Ax) = (4T A)x = (ATy)'x <0,

which is a contradiction.
Now suppose there is no solution to (I). Let us consider the primal-dual pair of prob-
lems

min 0Tx max by
(P) Ax = b D) Ay < 0
x > 0.

We know that (P) is infeasible since (I) has no solution. By Strong Duality, this implies that
(D) is either also infeasible or else is unbounded. However, (D) cannot be infeasible since
y = 0 is a feasible solution, so it must be unbounded. Thus for any constant &, there is a
feasible y for which b’y > a. In particular there must be a feasible y for which bTy > 0,
which is a feasible solution to (II).

4. 1claimed in class that strong duality fails for more general conic programming prob-
lems, where the nonnegative orthant is replaced by another closed convex cone. Here is
an example, showing that optimal solutions may not exist even if the problem is feasible
with bounded objective function value.

Recall that C e X denotes trace(CTX) for any equally-dimensioned matrices C and X.
Also note that a 2 x 2 symmetric matrix is positive semidefinite iff its diagonal entries
are nonnegative and its determinant is nonnegative.

Consider the problem

0 1}-}( Y

X is positive semidefinite.

(a) Show that this problem is feasible.
(b) Show that any feasible solution has nonnegative objective function value.

(c) Show that there are feasible solutions with arbitrarily small positive objective func-
tion value, but none with value 0.




(a) One feasible solution is
X = 11
* R

% ?
where X is positive semidefinite, the equality constraint is met, and the objective
function valueis 1.
(b) A feasible solution, X, must be positive semidefinite, and so its diagonal entries
2.4 must be nonnegative. The objective function value is the value of the first diagonal
¢ entry, so it too must be nonnegative.

(c) Foranye > 0, there is a solution of the form

e 1
X"[l %]'

l{(&' with objective function value e. However, every feasible solution must be of the

form .
a
<)
for some a, b, since X must be symmetric and its non-diagonal entries must sum to
2. Thus the objective function value can never reach 0 since this would imply 2 = 0,

which would mean the determinant of X wouldbe0-b—1-1= -1 which would

mean X is not positive semidefinite.
]



