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1. a) Suppose that E(z+, B+) is the minimum volume ellipsoid containing
{x€ E(z,B):aTx<a"z- «(aTBa)?},

where a > —1/mand 0 # a € R™. Show that
a7z — a(aTBa)t = alzy + %(aTB+a)%,

i.e., the “depth” of the constraint that was used to make the cut is exactly —1/m in
the new ellipsoid.

b) Suppose we apply the ellipsoid method to try to find a point in

1 1 1 1
{x € ]Rz X < il—'xl < '—El—xz < -'4'1x2 < 'i}/

starting with Ep := {x € R? : ||x|| < 1}. At each iteration, we choose as the cut to
define the new ellipsoid the constraint asz < b; with maximum depth

alz—b;
& = -T—”T,
(a; Ba;)2

stopping if all &;'s are nonpositive, and using the deep cut method (i.e., the ellip-
soid is updated as in (a)).

(i) What are the depths of all the constraints, and what cut is chosen, at the first
iteration?

(ii) What are the depths of all the constraints, and what cut is chosen, at the sec-
ond iteration?

a) By Theorem 2 of the lecture of 11/17, we know

_ Ba
o= a’Ba
Baa™B
By = §(B—UaTBa )
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wheret = 2, § = *—>=—,and 0 = ——L—y—l—”mﬂ +a)" Now using the fact that —1/m <

& < 1 we can calculate directly

1 Tg 1/2 Tp, T\ 1/2
aTz++;n-(aTB+a)1/2 = a'z a2 d (aTBa-—a—-—————-a Baa Ba)

B T(aTBa)l/z o aTBa
1/2 1/2
= aTz— 1(a"Ba)'/? + -5——7-'1— ((1 —0) (aTBa))

] 1/2¢1 _ +\1/2
T T— 4 (1 ‘T) ] (aTBa)I/Z

= alz-
m
i (1~a2m2)1/2( 2(14+ma )1/2 ,
(-a)fm 1._Z_£_W_Ly
— 1)(1
- aTz— T— mc-—-1 m+ +a (aTBa)l/z
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1) 201+ma)1—a)\">
=1 (m—l)(m+1)2) (a"Ba)'/2

-
= aTz- -'r—- ((m+1)(1—“)2‘2(1“*’"1“)(1““))1/2] (aTBa)V/2_
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(m—1)(m+1)2 .
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= PR M1 T m+d
= alz- (m+1)e 1)0‘} (aTBa)l/?
| 9 m+1

= atz— :x(aTBa)l/z,

which is the desired result. Note that the fact that —1/m < & < 1 was used to ensure
the square roots of (1 — ¢) and J could be taken.

b) (i) For this problem we have

1 0 1/2
(-1 o), [-172] ._f1 0y _ (0
At=1 o 1= B=\o 1)*= o)
0 1 1/2




So calculating the depths of each constraint we obtain

(1 0) (8) -1/2

e oG0T
= -1/2
(-1 0) (8 +1/2
ny = :
o 2) ()]
= 1/2
e
0 ()]
= 1/4
ah = © (8)—1/z%
LRI
= -1/2
So the cut that is chosen is
dx < alz-m(afBay)?
-x1 < —%.



(ii) Using Theorem 2 of the lecture of 11/17, with m = 2, we calculate

T

2(1 + may)




So we_again calculate the depth of each constraint

(1 0) (2/3> ~1/2

S eal2 )00

= 1/2

G (2/3>+1/2
()G

= -1/2

- (2/3>+1/4
005 ()]

= 1/4

R (2/3)_1 i
RIGELN

= -1/2

So the cut that is chosen is

alx < alzy — o (ag TB,a;)'/?
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2. Let A € R™" have rank m,and let P4 := 1 — AT(AAT)1A,

a) Show that P4 = Pl = P2 and hence that uTPsu = ||Pau|/? for every u € R". (So
P, is positive sem1def1n1te uTP4u > 0for all u.)

b) Show that P4v = 0 for every v in the range space of AT, and Pyv = v for every v
in the null space of A.




a) We have

and

(I1- AT(AAT)1A)T
IT _ AT(AAT)—'T(AT)T
I- AT((AT)TAT) A

I1- ATAAT) 1A

PAI

P2 = (I-AT(AAT)1A)(1- AT(AAT)14)

= I—-AT(AAT) 1A - AT(AAT) 1A + AT(AAT)1AAT(AAT) 1A
Py— AT(AAT) 1A + AT(AAT) 1A

]

= P,

Using these results we obtain

uTPAu

I

]

uTPiu
uTPAPAu
urPYPau
(Pau)T (Pau)
| Paulf?.

b) If v is in the range space of AT, then there is some x € R™ such that ATx = v. Thus

PAU =

PAATx
(I- AT(AAT)1A)ATx
CATx— AT(AAT)TAAT

ATx — ATx

0.

Now if v is in the null space of A then Av = 0so

PA'U

(I1- AT(AAT)TA)o
v— AT(AAT)1Av

v—AT(AAT) 10
= 7.
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3. Consider the standard-form LP problem and its dual, where A € R™*" has rank m,

and suppose x € FO(P) and (y,5) € FO(D). Let p = xTs/n, and suppose that xjs; > T
for all j, for soge positive 7. Suppose (Ax, Ay, As) is the solution to

ATAy + Bs = 0,
AAx = 0,
SAx + XAs = oue— XSe,

for some 0 < o < 1. Let (x(a),y(a),s(&)) := (x,¥,8) + w(Ax,Ay,As)for0 <a <1
a) Show that AxTAs = 0 and that p(a) := x(2)Ts(a)/n=(1—a+ac)p.
b) Let & := max{& € [0,1] : X(x)S(x)e = yu(a)e for all & € [0,&]}, and let
(%4, Y4,84) = (x(&),y(&),5(%)). Show that either x., is optimal in (P) and (y+,5+)
in (D), or x4 € FUP) and (y+,5+) € F 0(D), with only the second possibility if
c>0.
a) Since we know that AAx = 0 we have
AxTAs = AyTAAx + AsTAx
(ATAY)TAx+ AsTAx
(ATAy + As)TAx
= (0)TAx v
= 0.
Note that if we sum the 7 component-wise equations given in
SAx + XAs = oue — XSe

I

we obtain

sTAx + xTAs = nop — xTs.

Using this and the previous result we obtain
u(w) = x(a)Ts(a)/n
= (x+ aAx)T (s +ads)/n
xTs + aAxTs + axT As + a®AxTAs

n

T T

s'Ax+x" As
= pro——— ’ /

T £%
noy—Xx's
pro—
U+oaoy—ap

(1-a+ao)u.
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b) Since x € F9(P)wehave

Axy =Ax+A&Ax¥b+&AAx=b, »

and since (y,s) € F%(D) we have

ATy, +sy = ATy+ ATaAy +s+ans = ATy +s+a(ATAy + As) =c.

Now by part (a) we know u(&) = (1 — & + &o)y, and also g > 0. Let us consider
- two cases:

Case 1:

Case 2:

Suppose either ¢ > Q or else ¢ = 0 and & < 1. In either case we know that
1—-&+ac > 0 and thus u(&) > 0. We are given that ¢y > 0, so this implies .
X454 > 0. Since this is true of X(a)S(a) for any « € [0, &], then we know that
. o - X4,54+ > 0. Therefore
X4 € fo(P) and (y+,5+) € FO(D). -
If the above case does not hold, then it must be true that ¢ = 0 and & = 1. This
implies that (&) = (1) = (1-1+4+1-0)u = 0. So in this case X+ S > 0and by
the same reasoning as in Case 1 we have x,,s, > 0, which means x, € F(P)
and (y4,s+) € F(D). Furthermore, since ¢ = 0, then by the equality constraint

SAx + XAs = oue — XSe
we have s;Ax; + xjAs; = —x;s; for all j. So in particular , :
Ry B k| i°i Vs

x84 = (xj+ Axj)(s;+ Asj)

x;sj + s]-Ax]- -+ xjAs]- -+ Ax]-As,-
= Xj8j — XjSj

= 0.

This implies x1s; = 0, and since we had already established feasibility then
we have that x. is optimal in (P) and (y+,5+) in (D).




