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1. {(a) 14t ¢ be the vector of all ones. Write w = u —ae, u € R*,u> 0,0 > 0. Theu; correspond to

',.t(,hv w,, but are nonnegative, and there is one additional (nonnegative) variable a. To see that
9 ey (2\(' any w € R* can be written this way, consider an arbitrary w € R*. If w > O, then set a = 0 and
) u = w. Otherwise, set @ = — min; Wi, and u = w + ae. For any i we have w; > —a by our choice

; ofa,sou; =wi+a2 0.
g/i)) Again, let e be the vector of all ones. Write the set of equality constraints ATy = ¢y as the
following inequality constraints:

ATy < cw
Tlew)i € D (ALy)s
3>¢ : i
It’s clear that these are equivalent to the equality constraints. There is only one additional

constraint (the final one) and it can be rewritten as eTe, < €T ATy, Then we can rewrite the LP
problem as

max  b'y
ATy < cw
—eTATy < —eTeu,
ATy £ &

Given this formulation, it’s easy to see that this technique is the “dual” of thee technique in (a). We
take the dual of this LP, usingu € R*,a € R, and z € R, respectively, to weight the constraints
of the orignal LP. This gives us the dual LP

min fu - acke + eIz
Apu — oAge + Az = b
u,0,z >0
P which is the LP from part (a), but with w replaced by u — ae, and all noranegative variables.

c) Consider a more general primal problem (P)

in of T T
min ¢ T
min & + cuw +Cu

%Q %mm+{1ww+f‘1uu=b
Az +A,w+Au>h
Az + Ayw+Au<l

z > 0,u < 0, w unrestricted.
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We can take arbitrary multiples of the equality constraints, nonnegative multiples of the greater-than-or-
equal-to constraints and the non-positive multiples of the less-than-or-equal-to constraints to get
(ATy + AT; + ATv)z + (ATy + ATz + ATv)w + (ATy+ ALz + Afvju 2 by + 572 + 070
aslongas z>0,v<0 Sinces >20,u< 0 and w unrestricted, then we need ATy + ALz + ATv < ¢z,
ATy+ ATz 4+ ATy = ¢, and ATy + ATz 4+ ATv > ¢y, so that whenever (y, z,v) satisfies
A";y+ﬁgz+Afv <eq
ATy+ ATz + ATv=1cy
Aly+ ALz + Afv2 e
z>0,v<0
we have
CI:E + cﬁw + cfu
> (ATy+ ATz + ATv)z + (ATy + ALz + ATv)w + (ATy + ATz + ATv)u
> bTy—{—'BTz-k—b‘TU
for any feasible solution to (P). Then the best possible bound is the solution to the dual problem (D)},
max b7y +5z+bTv
Y20
ATy+ Alz+ ATv< e
Aly+ ALz + AJv=cy
Aly+ ATz + ATy > ¢,
z > 0,v < 0,y unrestricted
In fact, the procedure shown above is the weak duality. Then by examining the weak duality as shown, we

can conclude that for every non-positive primal variable there is a greater-than-or-equal-to dual constraint;
for every less-than-or-equal-to primal constraint there is an non-positive dual variable.
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(\i O pos ots) Il. PROBLEM 2

Let e € R™ be a vector of 1. Then we have ||Aw — bllc < 7 if and only if en — (Aw - ‘b). 2 Q and
en — (b — Aw) > 0. Therefore, the problem of minimizing ||Aw — ble is equivalent to minimizing 7)
constrained by en — (Aw — b) > 0 and en — (b — Aw) > 0. Therefore, we can formulate the LP problem in
primal form (P) as the following:

weg}},ﬁen n
en+ Aw > b,
en — Aw > -b,
n=0.

- Then the dual of (P) is
mw:ﬂy~§}
eTy + elz <1
Aly—ATz=0

y,220

After simplification by setting A = y — 2, we can get

max bTA
AER™
Al €1
AT =0 -

which involves 1-norm.
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The dual of this problem is simply max{by : ATy = c}. To show strong duality, there are
three cases we must consider:

i Neither problem has a feasible solution. In this case neither problem has an optimal
solution either.

ii One problem has a feasible solution but the other does not. Without loss of generality let
us assume that it is the primal problem that has a feasible solution. Then we know

ATy # c for all y. Thus ¢ is not contained in the column space of AT
alfiae subipoCe The feasible region for
the primal problem must be an of some dimension greater than 1 (since
A does not span R"), which ¢ is not contained in. Hence there is a component of
¢ that is orthogonal to the feasible region of the primal problem. Since this is a
« %‘/&\e sclespace.,, this means that we can move x in some direction indefinitely where the
objective function is increasing. Therefore the objective function is unbounded and

there is no optimal solution.

iii Both problems have feasible solutions. In this case if x and y are the feasible solutions
then
by = yTb = yT(Ax) = (4T A)x = (ATy)Tx =c'x,
so the two solutions must be equal. ’ ‘

So gﬂ:ﬁ «Qeo‘a‘\\o\é T aolukon e 0?1\‘:0(\0@,




4. Let S" denote the space of real symmetric n x n matrices. This is a finite-dimensional
vector space: indeed, by considering just hte upper-triangular entries or by taking an
appropriate basis, it can be viewed as isomorphic to R*(n+1)/2 A matrix A € 8" is
called positive semidefinite if xT Ax > 0 for all x € R™.

Show that the set of positive semidefinite real symmetric 7 X n matrices is a convex
cone containing the origin. You can do this directly, or by showing that it is an (infinite)
intersection of half-spaces corresponding to hyperplanes through the origin.

To show that the set of positive semidefinite real symmetric n X n matrices is a convex
cone we simply must show that the set is closed under finite positive linear combinations.
Let Aj,..., A, € S" be positive semidefinite and Ay,...,A, > 0. Then for any x € R" we

have
n n
xT (Z AiAi) X = ZXT/\,'A,' X

i=1 i=1

n
Z xTAAix
i=1

(Xn: )L,-xTAix)
i=1
= (}E Aici) , 20

I

il

i=]

where the c; are nonnegative constants, which we know to be true by the definition of
positive semidefinite. Since the A; are positive, we know this sum must be nonnegative,
thus any positive linear combination of positive semidefinite matrices is also positive
semidefinite. Furthermore if A = 0 then xT Ax = 0 > 0 for all x € R", so the set contains
the origin.
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