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Abstract

Combining different microarray data sets across platforms has the potential to gener-
ally increase statistical power. Distance Weighted Discrimination (DWD) is a powerful
tool for solving binary classification problems in high dimensions. It has also been shown
to provide an effective approach to binary cross-platform batch adjustment. In this pa-
per, we extend the binary DWD to the multicategory case. In addition to the usual
extensions which combine several binary DWD classifiers, we propose a global multiclass
DWD (MDWD) which finds a single classifier that considers all classes at once. Our theo-
retical results show that MDWD is Fisher consistent, even in the particularly challenging
case when there is no dominating class. The performances of different multiclass DWD
methods are assessed through simulation studies. While the idea is applicable to gen-
eral multicategory classification problems, we focus our application on batch adjustment.
The effectiveness of the MDWD batch adjustment method is demonstrated through the
application to a real microarray data set.

1 Introduction

Support Vector Machine (SVM), Vapnik (1998), Cristianini and Taylor (2000), Hastie et al.
(2001) and Distance Weight Discrimination (DWD), Marron et al. (2007) are two commonly
used large margin based classification methods. In the binary (2-class) classification problem,
SVM seeks to find the separating hyperplane to maximize the minimum distance from each
data point to the hyperplane. SVM will usually suffer from data-piling problems in High
Dimension Low Sample Size (HDLSS) settings. DWD is a recently developed classification
method which overcomes this issue and improves the generalizability in HDLSS data settings.
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DWD seeks to find the separating hyperplane to minimize a notion of the average inverse
distance from data points to the separating hyperplane.

Binary classification is a well studied special case. In many applications, multicategory
problems are important as well. Binary classification methods can be generalized in many
ways to handle multiple classes. Generalizations from binary SVM to multiclass SVM have
been well studied in the literature. Two general strategies are commonly used to tackle the
multicategory SVM problem. One strategy is to solve the multicategory problem by solving a
series of binary problems. Examples include One-Versus-One (OVO) and One-Versus-The-Rest
(OVR) approaches (Duda et al. (2000); Hastie et al. (2009)). The second strategy treats the
population in a simultaneous fashion and considers all classes at once. Various methods along
the line of the second strategy include Weston and Watkins (1999); Crammer and Singer (2000);
Lee et al. (2004); Liu and Shen (2006); Liu and Yuan (2010). However, to our knowledge,
generalization from binary DWD to multiclass DWD has not been studied. This article involves
the study of the extension of DWD from the binary case to the multicategory case using both
strategies.

For multiclass classification methods, one needs either to construct several binary classifiers
or to solve a larger optimization problem which involves all classes at the same time. The OVO
and OVR methods are computationally simple, and the global method is computationally
more complex. However, the OVO method has the disadvantage of potential variance increase,
because a smaller number of observations are used to learn each classifier. For the OVR method,
it may fail under the circumstances when there is no dominating class, see Friedman (1996)
and Lee et al. (2004). This leads to an interesting question of whether a more sophisticated
method can achieve stronger results than the combination of several simple binary methods.

For multiclass SVM problems, comparisons of these three methods have been studied. Hsu
and Lin (2002) conducted large-scale experiments and claimed that the OVO method is more
suitable for practical use than the other methods. Lee et al. (2004) and Liu and Yuan (2010)
demonstrated the superiority of their global method over the simple OVR method through
some numerical studies. Rifkin and Klautau (2004) claimed that a simple OVR method is
as accurate as any other approach. They supported their position by a critical review of the
existing literatures and some experimental work. It is interesting to consider whether similar
results can be obtained using the DWD method. We will carry out some simulation studies in
this paper for all three methods and indicate the situations under which each specific method
is preferred.

Microarray analysis has become a powerful tool in biological science. Microarray technolo-
gies allow for the measurement of thousands of gene expression levels simultaneously. The
primary goal of a microarray study is to extract useful information from differential expression
and provide insight into biological effects. However, nonbiological experimental variation such
as batch effects are commonly observed in microarray experiments due to different experimental
features. Large batch effects can make it difficult to obtain meaningful and accurate biological
results and also make it difficult to integrate data from several sources or from multiple inde-
pendent studies. Disregarding batch effects could result in misleading conclusions. Therefore,
it is important and necessary to identify and adjust batch effects prior to microarray data
analysis. Common approaches include mean/median centering, Singular Value Decomposition
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(SVD Alter et al. (2000)) and ANOVA-like modeling (Wolfinger et al. (2001)) to balance the
expression measurement across experiments. More sophisticated procedures have also been de-
veloped including an empirical Bayes method (Tibshirani et al. (2002); Johnson et al. (2007)),
DWD (Benito et al. (2004); Liu et al. (2009)), and XPN (Shabalin et al. (2008)). See Scherer
(2009) for a good review of this area.

The DWD classification method has been shown to provide effective batch adjustment for
microarray data by Benito et al. (2004), and Liu et al. (2009). They also demonstrated that
DWD can work better than SVM and SVD for the adjustment of systematic microarray effects.
Benito et al. (2004) implement batch adjustment by first projecting the data onto the DWD
normal direction and then moving the means of the two classes to a common point along that
direction. When there are more than two batches, they take a stepwise approach. For example,
for data including three batches, they first made a batch adjustment between Batches 1 and
2 (combined) and Batch 3. Next, they applied the same method to the adjusted data, to
separate Batch 1 from Batch 2. This stepwise method creates an additional level of complexity
especially when the number of batches considered is large because we need to decide which pair
should be chosen in each step. For a K class problem, our proposed global multiclass DWD
(MDWD) method will simultaneously produce K direction vectors which provide the basis of
our new batch adjustment method. The K normal direction vectors determine a subspace
which contains each class mean. We move each class in such a way that the class means move
to a common point in this subspace. In Section 2 we will show how our new multiclass batch
adjustment method gives better performance than any combination of binary methods.

The rest of the article is organized as follows. In Section 2 we present the batch adjustment
results for a real data set using our MDWD method. Different types of multiclass DWD
methods including OVO, OVR and MDWD are introduced in Section 3. Some theoretical
properties of multiclass DWD are explored in Section 4. In Section 5 we present numerical
results on simulated data to compare the performances of different methods. We provide some
discussions in Section 6 and collect proofs of the theoretical results in the Appendix.

2 Batch Adjustment and Real Data

As mentioned in Verhaak et al. (2010), Glioblastoma Multiforme (GBM) is one of the most
common forms of malignant brain cancer in adults. For the purposes of the current analysis,
we selected a cohort of patients from The Cancer Genome Atlas Research Network with GBM
cancer whose brain samples were assayed on three gene expression platforms (Affymetrix HuEx
array, Affymetrix U133A array, and Agilent 244K array) and combined into a single unified
data set. Four clinically relevant subtypes were identified using integrated genomic analysis in
Verhaak et al. (2010), they are Proneural, Neural, Classical, and Mesenchymal. The data set
came from seven batches and contained 168 patients with 1510 genes. Among the 168 samples,
there are 56 Mesenchymal samples, 24 Neural samples, 52 Proneural samples, and 36 Classical
samples.

Figure 1 studies the raw GBM data using a scatter plot matrix visualization based on
the first four Principal Component (PC) axes. Observations from different batches are distin-
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guished by different colors. The symbol types indicate the biological classes. The plots on the
diagonal show the one-dimensional projections of the data onto each PC direction vector. A
different height is added to each symbol just for convenient visual separation. In each diagonal
plot we also include several smooth histograms, colored according to the batch label. The
off-diagonal plots are projections of the data onto 2-d planes, determined by the various pairs
of the PC directions. Note that Batch 5 (red color) is clearly separated from the rest of the
batches in the PC1 direction. Figure 1 gives some suggestion of biological classes; for example
in the PC 4 direction, Proneural (circle) seems to separate itself from the rest. However, this
class is not very distinct in the sense the distances between batches are large relative to the
distances between biological classes. Therefore, it will be very useful to remove the batch
effects before doing data analysis.
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Figure 1: PCA projection scatter plot view of raw GBM data, showing 1D (diagonal) and
2D projections of raw data onto PC directions. Groupings of colors indicate batch biases.
Samples from Classical, Mesenchymal, Proneural, and Neural are indicated by “+”, “x”, circle
and triangle symbols respectively. This shows a very strong batch effect, so that adjustment
is essential before combining data sets.

The steps of the proposed MDWD batch adjustment are as follows: (1) The MDWD direc-
tion vectors generate a subspace. (2) The subpopulations (e.g. respective batch subsets) are all
projected onto that subspace. (3) The coordinates of the subpopulation projected means are
computed. (4) Each subpopulation is shifted in such a way that its projected mean is moved in
the subspace to a fixed point which is common to all subpopulations. An important advantage
of the MDWD adjustment over PCA adjustment is that it preserves the variation that is not
due to batch effects, because the MDWD directions maximize the separations between the
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batches and ignore the variation in the data.

Figure 2 shows (using the same view) the same data after the MDWD adjustment. Now
in all of the PC directions, the huge differences among batches visible in Figure 1 have disap-
peared, because the colors, representing the seven batches, are very well mixed. This means
that the systematic sample batch effects in the data have been effectively removed. From Fig-
ure 2, Proneural (to the right) seems to separate from Mesenchymal (to the left) in the PC 2
direction, and the batch differences are much smaller in magnitude than the biological features
in this data.

To further test the performance of our method, we apply a newly developed statistical tool
called Standardized Within class Sum of Squares (SWISS Cabanski et al. (2010)) to this data
set. SWISS allows for the comparison of different methods on a dataset in terms of how well
they cluster a priori biological classes. A lower SWISS score means better separation of the
cluster. The calculated SWISS score for the raw data and MDWD adjusted data are 0.9695
and 0.9361 respectively. The reduced SWISS score implies that our MDWD method is efficient
at adjusting for the batch effects.
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Figure 2: PCA scatter plot view of MDWD adjusted GBM data (labels are the same as in
Figure 1), showing effective removal of batch biases. Note that biological class differences are
now much more clear.

Adjusting batch effects in microarray data sets with more than two batches using the OVR
and OVO methods can be implemented by the combination of a series of binary adjustments.
The stepwise approach described in Benito et al. (2004) is based on the OVR DWD method.
The batch adjustment using the OVO method also takes a stepwise approach as follows. In
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each step, a pair of classes are combined together through a binary adjustment. So the number
of unadjusted classes is reduced by one after each step. This process is repeated until all classes
have been combined together.

The main drawback of the OVR and OVO adjustment methods is that their results depend
on the order, i.e, which pair of classes are used in each binary problem. In each step, the
number of options in constructing the binary problem increases with the number of total
classes. Therefore, in the case where the number of classes considered is big, this can be a
complicated problem because it is hard to find the optimal order among so many options.
Moreover, the class size can be quite unbalanced which will further complicate the problem
as shown in Qiao et al. (2010). A significant advantage of the MDWD method over the OVR
and OVO methods is that it provides a convenient way to do batch adjustment for data sets
with more than two batches. The MDWD method considers all batches at once and makes
adjustment simultaneously for all batches.

3 Methodology

In the classification problem, we are given a training dataset consisting of n observations (xi, yi)
for i = 1, · · · , n. Here xi ∈ Rd represents an input vector, and yi ∈ {1, · · · , K} denotes the
corresponding output class label. We assume that each (xi, yi) are independent random vectors
distributed according to some unknown distribution function P (x, y). The task is to build a
classification rule φ(x) : Rd → {1, · · · , K} which can be used to predict the class label for a
new input x. In this section, we generalize binary DWD to the multiclass case. We first define
OVR and OVO DWD which are based on solving several binary DWD classifications. Then
we introduce MDWD which considers all classes in a single optimization.

3.1 OVR and OVO DWD

The OVR constructs K binary classifiers, each one trained to distinguish the examples in the
single class from the examples in all remaining classes. When it is desired to classify a new
example, the K classifiers are run, and the classifier which outputs the largest value is chosen.

In contrast to SVM, which seeks to maximize the smallest residual distance to the separating
hyperplane, DWD aims to minimize the sum of inverse residuals. In particular, for the ith
DWD classifier which is trained with all of the examples in the ith class with positive labels
and all other examples with negative labels, we solve the following problem

min
w

i,βi,ξi

∑

k

( 1

rk

+ Cξi
k

)

, (1)

subject to rk = (xT
k wi + βi) + ξi

k, for k : yk = i,

rk = −(xT
k wi + βi) + ξi

k, for k : yk 6= i,

wiTwi ≤ 1, rk ≥ 0, ξi
k ≥ 0. (2)
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After solving (1), there are K decision functions and we say x is in the class which has the
largest value of the decision function, i.e. class of x = argmaxi(x

Twi + βi).

The OVO approach constructs K(K − 1)/2 classifiers where each one is trained on data
from two classes. For the classifier i, j which is trained on data from the ith class and the jth
class, we solve the similar binary classification problem

min
w

ij ,βij ,ξij

∑

k:yk=i or yk=j

( 1

rk

+ Cξij
k

)

, (3)

subject to rk = (xT
k wij + βij) + ξij

k , for k : yk = i,

rk = −(xT
k wij + βij) + ξij

k , for k : yk = j,

wijTwij ≤ 1, rk ≥ 0, ξij
k ≥ 0. (4)

There are different methods for combining the results of all K(K − 1)/2 classifiers. The most
commonly used method is called Friedman’s “Max-wins” voting strategy: if sign(xT

k wij + βij)
says x is in the ith class, then the vote total for the ith class is increased by one; otherwise
the vote total for the jth class is increased by one. Then we predict x is in the class with the
largest vote total.

3.2 MDWD

Here we propose an approach for multiclass DWD problems by considering all classes at once
and solving one single optimization problem simultaneously. We will show that the generalized
formulation encompasses that of the two category DWD, regaining the desirable properties of
the binary DWD. Consider a K-class classification problem. There are many different ways
to represent classifiers. One of the most natural ways is to introduce a vector of discriminant
functions f = (f1, · · · , fK), where each component represents one class. For any new input x,
its label is estimated via a decision rule ŷ = argmaxjfj(x), where fj(x) = xTwj + βj.

For extension of DWD from the binary to the multiclass case, the objective function can be
naturally constructed in such a way that it encourages fy to be the largest among K functions.
Here we formulate multiclass DWD in terms of the following optimization problem

min
w,β,ξ

n
∑

i=1

∑

k 6=j

(

1

ri
jk

+ Cξi
jk

)

, (5)

subject to ri
jk = fj(xi) − fk(xi) + ξi

jk, for yi = j,

ri
jk ≥ 0, ξi

jk ≥ 0,
K

∑

j=1

βj = 0,
K

∑

k=1

||wk||2 = 1. (6)

Note that the i-th individual’s contribution to the first term in the objective function (5) is the
sum of the inverse of the differences between fyi

(xi) and all the other functions. This represents
a natural generalization of the term yif(xi) appearing in the binary DWD loss function. The
parameter C in the second term in (5) controls the penalty on the variable ξ, the amount of
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violation of classification. It also plays the role of tuning parameter. Similar to the binary case,
using additional variables and constraints, the optimization problem (5) can be reformulated
as a second-order cone programming problem.

The following Theorem shows that the solution of (5) satisfies the sum-to-zero constraint.

Theorem 1. Let f∗ be the minimizer of (5). Then
∑K

j=1
f ∗

j = 0.

Proof of this Theorem and other proofs are given in the Appendix. Note that in mul-
ticlass SVM, this sum-to-zero relationship is introduced as one of the constraints to ensure
the uniqueness of the optimal solution. But here for multiclass DWD, we can show that the
solution for w given in (5) automatically satisfies this sum-to-zero constraint. Therefore only
K − 1 direction vectors are independent which makes the minimizer unique and reduces the
dimension of the original problem. If K = 2, it is easy to show that the problem (5) reduces
to the original binary DWD.

4 Theoretical Properties

In this section we study some of the statistical properties of multiclass DWD. We will focus
on Fisher consistency. Fisher consistency is a desired condition for a classification method
although a consistent method may not always give better classification accuracy. Fisher con-
sistency has been well investigated for binary classification methods. However, it turns out
that one can lose consistency in the generalization from the binary SVM to the multiclass
SVM. We first study the Fisher consistency of OVO and OVR DWD in Section 4.1 and then
study the Fisher consistency of MDWD in Section 4.2.

4.1 Fisher consistency of OVO and OVR DWD

It is easy to study the consistency property of the OVO type of approach to the multiclass
classification problem, assuming that the properties of the corresponding binary classifiers have
been well studied. Friedman (1996) pointed out that the “Max-wins” rule is equivalent to the
Bayes rule when the class posterior probabilities pi = P (y = i|x) are known:

argmaxi(pi) = argmaxi

[

∑

j 6=i

I
( pi

pi + pj

>
pj

pi + pj

)]

. (7)

Equation (7) suggests that the OVO method will be Fisher consistent as long as the consistency
of its underlying binary classifiers is satisfied. This allows us to conclude that the OVO DWD
is Fisher consistent since the Fisher consistency of binary DWD has been proved in Qiao et al.
(2010).

For the OVR SVM, Lee et al. (2004) argued that Fisher consistency holds only in the case
when there exists a dominating class, i.e., a class j with pj > 1/2, because only the support
vectors appear in each optimization, resulting in a flat region of the loss. More specifically, the
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minimizer of the OVR SVM classifier is sign(pi − 1

2
) for i = 1, · · · , K. If there is a class j with

pj > 1

2
, then we can easily pick the majority class j because fj would be near 1 and all of the

other fi would be close to −1. However, if there is no dominating class, then all fi’s would be
close to −1, making the classifier inconsistent.

In sharp contrast, since DWD uses all data points, the resulting loss is smoothly decreasing,
so Fisher consistency hold much more broadly in the sense that the solution satisfies f ∗

i > f∗
j

if pi > pj regardless of whether pi is bigger than 1

2
or not. The following theorem establishes

Fisher consistency of the OVR DWD:

Theorem 2. Let f ∗
i be the minimizer of the ith binary DWD classifier defined in the OVR

DWD method (5). Assume that the unique maximum of pi for i = 1, · · · , K exists. Then
argmaxi(f

∗
i ) =argmaxi(pi).

4.2 Fisher Consistency of MDWD

Qiao et al. (2010) proved the Fisher consistency of binary DWD by using an equivalent for-
mulation of the DWD optimization. We will show the Fisher consistency of multiclass DWD
based on the extension of the equivalent formulation from binary case to multiclass case.

For each i = 1, · · · , n and k = {1, · · · , K}/{yi}, we define f i
yik

= f i
yi
− f i

k = (xT
i wyi

+βyi
)−

(xT
i wk + βk). The multiclass DWD optimization problem (5) can be shown to be equivalent

to the following problem

min
w,β:wT

w≤1

min
ξ≥0

n
∑

i=1

∑

k 6=j

(

1

f i
yik

+ ξi
yik

+ Cξi
yik

)

. (8)

It can be shown that the optimal solution for the inside optimization part of (8) is given by
(ξi

yik
)∗ = 1√

C
− f i

yik
if f i

yik
≤ 1√

C
; (ξi

yik
)∗ = 0 otherwise. Then the multiclass DWD problem

amounts to

min
w,β

n
∑

i=1

∑

k 6=yi

(

[2
√

C − Cf i
yik

]I

[

f i
yik

≤ 1√
C

]

+
1

f i
yik

I

[

f i
yik

≥ 1√
C

]

)

(9)

subject to
K

∑

k=1

||wk||2 = 1. (10)

If we define the multiclass DWD loss function as

V (f , y) =
∑

j 6=y

l(fyj), (11)

where

l(fyj) =

{

2
√

C − Cfyj iffyj ≤ 1√
C

1

fyj
otherwise,
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then the multiclass DWD optimization is min
w,β

∑n

i=1
V (f(w,β), yi), s.t.

∑K

k=1
||wk||2 ≤ 1.

Consider y ∈ {1, · · · , K} and let pj(x) = P (y = j|x). For any classification function f =
(f1, · · · , fK), the expected multiclass DWD loss, that is, the risk, is R(f) = E(E(V (f(x), y)|x)).
Fisher consistency requires that argmaxjf

∗
j =argmaxjpj, where f∗(x) = (f ∗

1 (x), · · · , f ∗
k (x))

denotes the minimizer of R(f). Theorem 3 shows the Fisher consistency of multiclass DWD.

Theorem 3. Let f∗ be the global minimizer of R(f) = E(E(V (f(x), y)|x)), where V (·) is the
multiclass DWD loss given in (11). Assume that the unique maximum of pj for j = 1, · · · , K
exists. Then argmaxj(f

∗
j ) =argmaxj(pj).

There are previous studies on Fisher consistency of multiclass SVM methods such as Zhang
(2004); Lee et al. (2004); Tewari and Bartlett (2005); Liu (2007); Zou et al. (2008). Liu (2007)
summarized the Fisher consistency properties of four commonly used SVM loss functions:

(a) (Zou et al. (2008)) [1 − fy(x)]+;

(b) (Lee et al. (2004))
∑

j 6=y[1 + fj(x)]+;

(c) (Vapnik (1998); Weston and Watkins (1999); Bredensteiner and Bennett (1999))
∑

j 6=y[1−
(fy(x) − fj(x))]+;

(d) (Crammer and Singer (2000); Liu and Shen (2006)) [1 − minj(fy(x) − fj(x))]+.

It was shown in Liu (2007) that, under the sum-to-zero constraint, except for loss (b), these
losses are not always Fisher consistent. Two approaches were proposed in Liu (2007) to modify
inconsistent losses to be consistent. It is interesting to see that the DWD loss function we
used in (11) is related to the SVM counterpart (c). But the DWD loss function yields a
Fisher consistent classifier without modification. The reason is that the loss function (11) is
continuously differentiable as opposed to the SVM loss function which is not differentiable.
This appealing property of DWD is due to the fact that all data points have a direct influence,
instead of only the support vectors.

5 Simulations

In this section, simulations are conducted to investigate the performance of the proposed OVR,
OVO and MDWD methods. For comparison, the results from the Bayes classifiers, which are
derived based on the true underlying distributions, are also included.

The simulated data sets include training, tuning and test sets. We generated the tuning
and testing data from the same distributions as the training data. For the reason noted in
Shao (1993), we set the sample sizes of tuning sets equal to that of the training sets. The sizes
of the test sets are taken to be 10 times bigger than that of the training sets. Each experiment
was replicated 100 times. Tuning sets are used to choose the tuning parameter C through a
grid search, and the testing errors, evaluated on independent testing data, are used to measure
the accuracy of various classifiers.
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We have tried many different settings, including both low dimensional and high dimensional.
To save space, we only report the results from the high-dimensional settings since the focus of
MDWD is on the high-dimensional situations. We consider HDLSS settings with d = 1000 in
all simulations.

Our simulation results show that in situations where each class can be well separated from
the rest, the performance of all three multiclass DWD methods are quite similar and are close
to the optimal Bayes rule. We do not explicitly show these results here. The first example we
show belongs to the situations where not all individual classes can be well separated from the
rest. The data include three classes with the sample size of each training class being 50. The
three classes are generated using three different Gaussian distributions with unit covariance
and the first two components of the mean vectors as (−5, 0), (5, 0) and (0, 1). The rest of
the d − 2 dimensions are pure noise, i.e., all sampled from the standard normal distribution.
If it is known that one should look in the direction of the first two coordinates, then the
three classes are easy to separate, as shown by the tiny test error of the Bayes rule. However,
in high dimensions, it can be quite challenging to find those directions. To investigate the
generalizability property of the different methods, we exhibit the average performance over
100 replications in the first row of Table 1. The table summarizes the mean and standard
error (over the 100 replications) of the proportion (out of 1500 members of each test data set)
of incorrect classifications. Note that none of the three methods can achieve results close to
optimal. But both OVO and MDWD are quite comparable, and much better than OVR, which
is consistent with the ideas of Friedman (1996).

Table 1: Test errors (in percentage) over 100 replications

OVR OVO MDWD Bayes
Example 1 16.18 7.59 7.59 0.72

(0.11) (0.08) (0.08) (0.02)
Example 2 9.45 8.64 6.96 4.67

(0.15) (0.12) (0.14) (0.05)
Example 3 19.36 19.81 18.02 15.23

(0.06) (0.05) (0.13) (0.07)
Example 4 29.00 24.63 15.28 0.70

(0.17) (0.19) (0.20) (0.02)
Example 5 30.96 28.75 19.08 3.39

(0.17) (0.18) (0.27) (0.06)

Examples 2 is a case where MDWD is the best of these three methods. The data include
three classes with the same sample size as Example 1. The first two components of the
distributions for the three classes are Gaussians with means (−10, 0), (10, 0) and (0, 2) and
variances (5, 1), (5, 1) and (1, 2). Figure 3 shows the projections of the data points and the
decision boundaries onto the first two directions. The first, second and third classes have
n1 = n2 = n3 = 50 data vectors denoted by red plus, blue square, and white circle signs
respectively. The optimal Bayes decision boundary is quadratic for this case due to the fact
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that the variances are different among three classes. In this example, classes 1 and 2 can be
easily separated and it is challenging to separate class 3 from the other two. The MDWD
classifier results in a decision area for class 3 which is close to the one provided by the Bayes
rule. In contrast, the OVR and the OVO decision areas for class 3 are either too thin or too wide
near the bottom of plot where most data lie. The small distances and different covariances
among classes make it difficult to do separation using the OVR and OVO methods. The
MDWD method can provide improvement in this situation as shown by both the test error
rate in the second row of Table 1 and the illustration in Figure 3.
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Figure 3: Plots of data points and decision boundaries in the first two coordinate axis directions
for one training set of Example 2. Upper left panel for Bayes boundary, upper right for MDWD,
lower left for OVR, lower right for OVO. The numbers in the parentheses show the test errors
for this set.

Example 3 also includes three classes with the same sample size as the previous two ex-
amples. The distributions of the first two classes are single Gaussians with the first two
components of mean vectors as (−10, 0) and (10, 0). However, the third class is a mixture
of two Gaussian distributions with the first two components of mean vectors as (10, 1) and
(10, 20). We have 60% of the data from the first Gaussian component and the remaining from
the second component. The small distance between the second component of class 3 and class
2 makes it difficult to separate these two classes using binary DWD. The MDWD method
can provide improvement in this situation. It considers all data points from the three classes
simultaneously and the impact of the second component in class 3 can help the separation
between classes 2 and 3. Thus it improves the test error rate over the OVO method as shown
in the third row of Table 1.
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All three of the above examples are balanced designs, i.e., the sample size of each class
is the same. Examples 4 and 5 are unbalanced cases where different classes have different
sample sizes. Example 4 includes three classes with training sample sizes being 50, 20, and 30
respectively. The distributions of the three classes are the same as those in Example 1. The
test errors for this example (the fourth row of Table 1) show clear improvement of the MDWD
method over the other two. Example 5 includes four classes with training sample sizes being
50, 20, 30, and 10 respectively. The distributions of the four classes are Gaussian with unit
covariance and the first three components of the mean vectors being (-5,0,0), (5,0,0), (0,2,0)
and (0,0,2) respectively. The outperformance of the MDWD method over the other methods
for this example can be shown in the fifth row of Table 1. Examples 4 and 5 show that the
MDWD method can give a big improvement in classification error rate over the OVO and OVR
methods in unbalanced situations. This is a quite appealing property of MDWD because real
data are often unbalanced.

6 Discussion

In this article we have extended the DWD classification method to the multicategory case.
In addition to the OVR and OVO approaches which solve the multicategory problem via
a sequence of binary DWD, we have proposed a new MDWD approach which generalizes
the binary DWD to a simultaneous multicategory formulation. Our theoretical results show
that MDWD is Fisher consistent even in the absence of a dominating class for multicategory
problems. The simulation studies show that our MDWD method can always work as well as,
and frequently better than, the existing OVR and OVO methods in multicategory problems.

An important direct application of our MDWD is to provide a powerful method for the
adjustment of various types of systematic biases such as source and batch effects in microarray
experiments. We have demonstrated the usefulness of this method through application to a
microarray data set. We recommend MDWD as a general approach for removing systematic
bias effects from microarray data and for merging different data sets.

Although our focus in this article is on the application of batch adjustment, the proposed
MDWD method can also be applied to general multicategory classification problems, as indi-
cated by our simulation studies. An important future research issue is the HDLSS asymptotics.
Hall et al. (2005) showed that under certain conditions, there exists a geometric representa-
tion of data in the high dimensional case. This representation has been successfully applied
to study the asymptotic properties of binary classifiers such as SVM, DWD, and BDD (Hall
et al. (2005); Qiao et al. (2010); Huang et al. (2010)). However, no HDLSS asymptotic studies
have been carried out for multiclass classifiers even for the SVM method. In future research,
we will use this geometric representation to study the asymptotic behaviors of the proposed
multicategory DWD classifier in HDLSS settings.
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Appendix

Proof of Theorem 1: Note that the objective function (5) only depends on the direction
vectors w through the form of pairwise differences (wj−wk). Thus adding any constant vector
w0 to all wj will not change the objective function value. We can rewrite the direction vectors
w as w1 = w0,w2 = w0+w12, · · · ,wK = w0+· · ·+wK−2,K−1. Then the w0 term only appears

in the constraint S =
∑K

k=1
||wk||2 = ||w0||2 + ||w0 +w12||2 + · · ·+ ||w0 + · · ·+wK−2,K−1||2 = 1.

Since both the objective function (5) and the constraints (6) are continuously differentiable
with respect to w, according to the Karush-Kuhn-Tucker (KKT) condition, the solution w∗

should satisfy ∂S
∂w

∗

0

= 2(w∗
0 + (w∗

0 + w∗
12) + · · · + (w∗

0 + · · · + w∗
K−2,K−1)) =

∑K

j=1
w∗

j = 0.

Combining this equation with the constraint
∑K

j=1
βj = 0 we immediately get

∑K

j=1
f ∗

j = 0. 2

Proof of Theorem 2:

From Qiao et al. (2010), we get that the minimizer for the ith binary classifier in the
One-vs-the-rest DWD method is

f ∗
i =

1√
C







√

pi

1−pi
if pi > 1

2
√

1−pi

pi
if pi < 1

2
.

Thus, we can easily show that f ∗
i > f∗

j if pi > pj regardless whether pi is bigger than 1

2
or not.

Hence the Theorem immediately follows. 2

Proof of Theorem 3: Note that R(f) = E(E(V (f(x), y)|x)), We can minimize R(f) by
minimizing E(V (f(x), y)|x) for every x. For any fixed x, E(V (f(x), y)|x) can be written as
∑K

j=1
pj(x)[

∑

k 6=j l(fjk)]. For any given X = x, assume that pj(x) > pk(x). Then we can
conclude that the solution of f ∗

j (x) ≤ f ∗
k (x). To show this, suppose that f ∗

j (x) < f∗
k (x), it

is easy to see that switching f ∗
j (x) and f ∗

k (x) will yield a smaller objective value due to the
decreasing property of l. Without loss of generality, assume that p1(x) > p2(x) ≥ p3(x) · · · ≥
pK(x), which implies that the minimizer must satisfy f ∗

1 (x) ≥ f ∗
2 (x) ≥ · · · ≥ f ∗

K(x). We need
to show that f ∗

1 (x) > f∗
2 (x). Consider f1 − f2 = s1, f2 − f3 = s2, · · · , fK−1 − fK = sK−1, The

problem reduces to

min
s

L(s) (12)

subject to sj ≥ 0, j = 1, · · · , K − 1, (13)

where

L(s) =
K

∑

k=1

pk(l(−s1 − · · · − sk−1) + · · · + l(−sk−1) + l(sk) + · · · + l(sk + · · · + sK−1)).

Since both the objective function and the constraints are continuously differentiable, the opti-
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mal solution of (12) must satisfy Karush-Kuhn-Tucker (KKT) condition, i.e.

∂L(s)

∂si

− αi

=
i

∑

k=1

pk(l
′(sk + · · · + si) + · · · + l′(sk + · · · + sK−1))

+
K

∑

k=i+1

pk(l
′(−s1 − ... − sk−1) − · · · + l′(−si − · · · − sk−1)) − αi

=
i

∑

k=1

pk(l
′(sk + · · · + si) + · · · + l′(sk + · · · + sK−1)) + iC

K
∑

k=i+1

pk − αi

= 0, (14)

where

αi ≥ 0 and αis
∗
i = 0, for all i = 1, · · · .K − 1

(15)

It is sufficient to show that s∗1 = 0 is not a minimizer. Toward this end, suppose that s∗1 = 0,
we have

∂L

∂s1

= p1(l
′(s1) + · · · + l′(s1 + · · · + sK−1)) +

K
∑

k=2

Cpk

= p1(l
′(0) + l′(s∗2) · · · + l′(s∗2 · · · + s∗K−1)) +

K
∑

k=2

Cpk = α1, (16)

and

∂L

∂s2

= p1(l
′(s1 + s2) + · · · + l′(s1 + · · · + sK−1))

+p2(l
′(s2) + · · · + l′(s2 + · · · + sK−1)) + 2

K
∑

k=3

Cpk

= (p1 + p2)l
′(s2) + · · · + l′(s2 + · · · + sK−1) + 2

K
∑

k=3

Cpk = α2. (17)

From (16) we have

l′(s2) + · · · + l′(s2 + · · · + sK−1) =
α1 −

∑K

k=2
Cpk + Cp1

Cp1

=
α1 − C + 2Cp1

Cp1

.

Substitute into (17), we have

α2 = (p1 + p2)
α1 − C + 2Cp1

p1C
+ 2

K
∑

k=3

Cpk

=
(p1 + p2)α1 + C(p1 − p2)

Cp1

> 0, (18)
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which implies s∗2 = 0 from the fact that α2s2 = 0.

Suppose that αj = 0 for all j = 1, · · · , i − 1. From (16), we have

l′(si) + · · · + l′(si + · · · + sK−1) =
α1 −

∑K

k=2
Cpk + (i − 1)Cp1

Cp1

=
α1 − C + iCp1

Cp1

.

Then substitute into the ith formulae, we have

αi = (p1 + · · · + pi)(l
′(si) + · · · + l′(si + · · · + sK−1)) + i

K
∑

k=i+1

Cpk

= (p1 + · · · + pi)
α1 − C + iCp1

Cp1

+ iC(1 − (p1 + · · · + pi))

=
(p1 + · · · + pi)α1 + iCp1 − C(p1 + · · · + pi)

Cp1

> 0, (19)

thus we have s∗i = 0. We conclude that s∗j = 0 for all j = 1, · · · , K − 1. But from (16), we
have that

α1 = (K − 1)p1l
′(0) +

K
∑

k=2

Cpk = C(
K

∑

k=2

Cpk − (K − 1)p1 < 0,

which is contradict to the KKT requirement that α1 ≥ 0. Thus s∗1 = 0 can not be the minimizer
which implies f ∗

1 is the unique maximum. 2
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