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Abstract

The max-k-sum of a set of real scalars is the maximum sum of a subset of size k,
or alternatively the sum of the k largest elements. We study two extensions: First, we
show how to obtain smooth approximations to functions that are pointwise max-k-sums
of smooth functions. Second, we discuss how the max-k-sum can be defined on vectors in
a finite-dimensional real vector space ordered by a closed convex cone.

1 Introduction

Given y1, . . . , yn ∈ IR, we define their max-k-sum to be

Mk(y) := max
|K|=k

∑
i∈K

yi =

k∑
j=1

y[j], (1)

where y[1], . . . , y[n] are the yi’s listed in nonincreasing order. We similarly define their
min-k-sum to be

mk(y) := min
|K|=k

∑
i∈K

yi =
n∑

j=n−k+1

y[j]. (2)

(Throughout, we use both sub- and superscripts for indexing. Powers are denoted by
placing their arguments in parentheses.)

Clearly, these generalize the maximum and minimum of a set of numbers (k = 1).
They arise for instance in limiting a quantile of a distribution as in the conditional
value at risk (Rockafellar and Uryasev [17]), when the distribution is modelled by equally
likely scenarios, as well as in certain penalties for peak demands in electricity modelling
(Zakeri, Craigie, Philpott, and Todd [20]). Max-k-sums are also special cases (when y is
nonnegative) of OWL (ordered weighted l1-) norms, which have recently been introduced
in Bogdan et al. [3] and Zeng and Figueiredo [21, 22] as regularizers for statistical learning
problems. Conversely, OWL norms can be seen as nonnegative combinations of max-k-
sums. The sum of the k largest eigenvalues of a symmetric matrix arises in applications
and also as a tool in the variational study of the kth largest eigenvalue: see for example
Hiriart-Urruty and Ye, [7].
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We are interested in extending these notions in two ways. First, we might define a
function by taking pointwise the max-k-sum or min-k-sum of a set of smooth functions.
We define the max-k-sum and min-k-sum of functions f1, . . . , fn on IRd to be

F k(t) := Mk(f1(t), . . . , fn(t)) (3)

and
fk(t) := mk(f1(t), . . . , fn(t)). (4)

It is immediate that, even if the fi’s are smooth, these derived functions may not be. (The
cover of this journal depicts the max-1-sum of two linear functions.) It is well known that,
if the fi’s are convex, so is F k, while if they are concave, so is fk. We are interested in
finding smooth approximations to these functions, with predetermined accuracies. We
would also like these approximations to inherit the above convexity/concavity properties,
and also the sign reversal property:

if (g1, . . . , gn) = −(f1, . . . , fn), fk(t) = −Gk(t)

and the summability property:

F k(t) + fn−k(t) =

n∑
i=1

fi(t)

for any 1 ≤ k ≤ n− 1. We can also extend this to k = 0 and k = n by naturally defining
max- and min-0-sums to be identically 0. (Henceforth, we use

∑
i to denote summation

over the range i = 1 to n.) There are also natural invariance properties, under translation
and positive scalar multiplication, which we would also like to be preserved.

Second, we would like to define max- and min-k-sums for sets y1, . . . , yn of vectors in
a finite-dimensional real vector space which is partially ordered by a closed convex cone,
for example the space of real symmetric or complex Hermitian matrices with the Löwner
partial order: X � Y iff X − Y is positive semidefinite. We discuss various approaches
to extend these notions, either directly or in their smoothed versions as above, and ask
whether these extended definitions satisfy the same properties as in the real scalar case.

Clearly, the max- and min-k-sum of a set of real scalars can be computed in O(n lnn)
time by sorting the entries. We are interested in the complexity of computing the smoothed
versions or the extensions to various partially ordered vector spaces.

Our original motivation was in deriving efficient self-concordant barriers for interior-
point methods. It is well-known that, if each fi is a νi-self-concordant barrier for the
closed convex set Ci ⊆ IRd, and C := ∩iCi has a nonempty interior, then

∑
i fi is a

ν-self-concordant barrier for C, with ν =
∑

i νi. On the other hand, there exists a self-
concordant barrier for C with parameter O(d). (See Nesterov and Nemirovskii [14, 12].)
Our hope was that a suitable smoothing of the max-d-sum of the fi’s (where all νi’s
are O(1)) would be such a self-concordant barrier. Unfortunately, the smoothings we
produce do not seem to be self-concordant or to deal gracefully with replication of the
Ci’s (Nemirovskii [15]).

In the next section, we consider smoothing the max-k-sum using randomization. Sec-
tion 3 addresses an alternative smoothing technique that perturbs an optimization repre-
sentation of the sum. In Section 4 we discuss the extensions of max-k- and min-k-sums to
vector spaces ordered by a closed convex cone, building on the constructions in Sections
2 and 3. Nice properties hold for symmetric cones, for example the second-order cone
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or the cone of positive semidefinite matrices in the space of real symmetric or complex
Hermitian matrices.

Henceforth, to simplify the notation, we consider smoothing or extending the function
taking y to Mk(y) or mk(y); composing the result with the function from t ∈ IRd to
f(t) := (f1(t), . . . , fn(t)) will then deal with the general case. Our results are generallly
stated for Mk and mk, and their translations to F k and fk are immediate and will usually
not be explicitly stated.

2 Smoothing using randomization

A natural way to smooth a nonsmooth function h : IRd → IR, such as F k above, is to take
its convolution with a smooth function, i.e., to consider

h̃(t) :=

∫
IRd
h(t− s)φ(s)ds,

where φ is a smooth probability density function concentrated around 0. However, this
smoothing may be hard to compute, and in the barrier case (where h is +∞ outside
some open convex set C) it does not have the same effective domain (the set where
its value is less than +∞) as the generating nonsmooth function. We can view this
approach as “smearing” in the domain of h or of the fi’s. The first method we consider
instead “smears” in the range of these functions, which yields a computable function that
maintains many properties of the max-k-sum.

(When we deal with Mk, there is no distinction between smearing in the domain and
smearing in the range, which is why the discussion above was phrased for max-k-sums of
functions.)

We add noise to each component of y, take the max-k-sum, and then take expectations.
We also compensate for the expectation of the noise. Hence let ξ1, . . . , ξn be independent
identically distributed random variables distributed like the continuous random variable
Ξ, and define

M̄k(y) := Eξ1,...,ξn max
|K|=k

∑
i∈K

(yi − ξi) + kEΞ. (5)

For our smooth version of the min-k-sum, we correspondingly define

m̄k(y) := Eξ1,...,ξn min
|K|=k

∑
i∈K

(yi − ξi) + kEΞ. (6)

We record some simple properties of these approximations.

Proposition 1 We have
(a) (0- and n-consistency) M̄0(y) = m̄0(y) = 0, and M̄n(y) = m̄n(y) =

∑
i yi.

(b) (summability) For 0 ≤ k ≤ n, M̄k(y) + m̄n−k(y) =
∑

i yi.
(c) (translation invariance) For 0 ≤ k ≤ n and η ∈ IR, with 1 := (1, . . . , 1) we have

M̄k(y + η1) = M̄k(y) + kη, m̄k(y + η1) = m̄k(y) + kη.
(d) (approximation)

Mk(y) ≤ M̄k(y) ≤Mk(y) + M̄k(0) ≤Mk(y) + min(kM̄1(0),−(n− k)m̄1(0))

and

mk(y) ≥ m̄k(y) ≥ mk(y) + m̄k(0) ≥ mk(y)−min((n− k)M̄1(0),−km̄1(0)).
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Proof: (a) follows since there is only one subset of cardinality 0, the empty set, and
only one of cardinality n, the full set.

For (b), note that

Eξ1,...,ξn max
|K|=k

∑
i∈K

(yi − ξi) + Eξ1,...,ξn min
|L|=n−k

∑
i∈L

(yi − ξi) =

Eξ1,...,ξn [ max
|K|=k

∑
i∈K

(yi − ξi) + min
|L|=n−k

∑
i∈L

(yi − ξi)] =

Eξ1,...,ξn
∑
i

(yi − ξi) =
∑
i

yi − nEΞ.

(c) also follows from the linearity of the expectation, since after translation, each sum
of k entries of yi − ξi is translated by kη.

Finally, let K̂ be the subset attaining the maximum in Mk(y). Then for any realization
of (ξ1, . . . , ξn), we can choose K = K̂, giving a sum of Mk(y)−

∑
i∈K̂ ξi, with expectation

Mk(y)− kEξ. The definition of M̄k(y) allows any choice of K to achieve the maximum,
and so the left-hand inequality of the first part of (d) follows. Next,

max
|K|=k

∑
i∈K

(yi − ξi) ≤ max
|K|=k

∑
i∈K

yi + max
|K|=k

∑
i∈K

(−ξi) ≤Mk(y) + kmax
i

(−ξi),

and this yields M̄k(y) ≤ Mk(y) + M̄k(0) ≤ Mk(y) + kM̄1(0). A similar argument holds
for m̄k(y), yielding mk(y) ≥ m̄k(y) ≥ mk(y) + m̄k(0) ≥ mk(y) + km̄1(0). Finally, using
summability for M̄k shows that M̄k(0) = −m̄n−k(0) ≤ −(n − k)m̄1(0), and similarly
m̄k(0) = −M̄n−k(0) ≥ −(n− k)M̄1(0), and thus we obtain (d).
ut
While we have translation invariance for our smoothed max-k-sums, we do not have

positive scaling invariance: in general, M̄k(αy) 6= αM̄k(y) for positive α. The reason
is that we need to scale the random variables as well as y. If we show the dependence
of M̄ on the random variables, and write M̄k(y; Ξ) when the ξ’s are independently and
identically distributed like Ξ, and similarly for m̄k, we have immediately

M̄k(αy;αΞ) = αM̄k(y,Ξ) and m̄k(αy;αΞ) = αm̄k(y; Ξ) (7)

for positive scalars α. For negative α, we obtain

M̄k(αy;αΞ) = αm̄k(y,Ξ) and m̄k(αy;αΞ) = αM̄k(y; Ξ).

Setting α = −1, we get the sign reversal property: m̄k(y; Ξ) = −M̄k(−y;−Ξ).
In order to proceed, we need to choose convenient distributions for the ξ’s. It turns

out that, to obtain simple formulae for M̄k for small k, it is suitable to choose Gumbel
random variables, so that P (Ξ > z) = exp(− exp(z)), with probability density function
exp(z−exp(z)) and expectation EΞ = −γ, the negative of the Euler-Mascheroni constant.
(If we are interested in M̄k for k near n, we can choose negative Gumbel variables; then by
the equations above with α = −1, we can alternatively calculate m̄k for Gumbel variables,
or by summability M̄n−k for Gumbel variables, which will again be simple to compute.)

Henceforth, we assume each ξi is an independent Gumbel random variable. Let qk
denote the expectation of the kth largest yi − ξi.
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Proposition 2

qk =
∑
|K|<k

(−1)k−|K|−1
(
n− |K| − 1

k − |K| − 1

)
ln

(∑
i/∈K

exp(yi)

)
+ γ

(here we employ the convention that
(
0
0

)
= 1).

Proof: We know that qk is some yi− ξi, with a set J of k− 1 indices j with yj − ξj at
least yi − ξi, and the remaining indices h with yh − ξh at most yi − ξi. Hence, summing
over all possible i’s and J ’s, we obtain

qk =
∑
i

∑
J :|J |=k−1,i/∈J

∫
ξi

Πj∈JP (yj − ξj ≥ yi − ξi)

Πh/∈J∪{i}P (yh − ξh ≤ yi − ξi)(yi − ξi) exp(ξi − exp(ξi))dξi.

Now each term in the first product is 1 − exp(− exp(yj − yi + ξi)) , and each term in
the second product is exp(− exp(yh − yi + ξi)). Let us expand the first product, and
consider the term where the “1” is taken for j ∈ K, with K a subset of J and hence of
cardinallity less than k. For this K, and a particular i, there are

(n−|K|−1
k−|K|−1

)
choices for the

remaining indices in J . For each such J , the summand is the same. Hence, noting that
exp(− exp(ξi)) can be written as exp(− exp(yi − yi + ξi)), we see that

qk =
∑

K:|K|<k

(
n− |K| − 1

k − |K| − 1

)
(−1)k−|K|−1

∑
i/∈K

∫
ξi

(yi − ξi) exp(ξi) exp(−
∑
h/∈K

exp(yh − yi + ξi))dξi.

The last exponential above can be written as exp(− exp(ξi− yi) exp(ln
∑

h/∈K exp(yh))) =
exp(− exp(ξi − zi)), where

zi := yi − ln

(∑
h/∈K

exp(yh)

)
.

Thus the integral above can be simplified to∫
ξi

(yi−ξi) exp(ξi−exp(ξi−zi))dξi =

∫
ξi

([yi−zi]−[ξi−zi]) exp(zi) exp(ξi−zi−exp(−ξi−zi))dξi.

Now exp(ξi− zi− exp(ξi− zi)) is the probability density of a translated Gumbel variable,
so the integral evaluates to

(yi − zi) exp(zi)− (−γ) exp(zi) =

[
ln

(∑
h/∈K

exp(yh)

)
+ γ

]
exp(zi).

From the definition of zi, exp(zi) = exp(yi)/
∑

h/∈K exp(yh), so
∑

i/∈K exp(zi) = 1. Thus
the sum of the integrals is ln(

∑
h/∈K exp(yh)) + γ, and we almost have the result of the

proposition, except that γ appears in each term, rather than added on once. It therefore
suffices to show that ∑

K:|K|<k

(
n− |K| − 1

k − |K| − 1

)
(−1)k−|K|−1 = 1,
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or, writing j for |K| and p for k − 1,

p∑
j=0

(−1)p−j
(
n

j

)(
n− 1− j
p− j

)
= 1. (8)

The following argument is due to Arthur Benjamin (private communication), using the
Description-Involution-Exception technique of Benjamin and Quinn [1].

Let us count the number of ways the numbers 1 through n can be colored red, white,
and blue, with p numbers colored red or blue and the first non-red number colored white.
If there are j red numbers, then these can be chosen in

(
n
j

)
ways, and the blue numbers

can be chosen in
(
n−1−j
p−j

)
ways (since the first non-red number must be white). So the

sum above, without the sign term, exactly counts these configurations.
Now we introduce an involution on these configurations, by toggling the last non-

white number between red and blue. Thus RWBR becomes RWBB and vice versa. This
maintains the number of red or blue numbers, and changes the parity of the number of
red and the number of blue colors, and hence the sign of (−1)p−j . Moreover, we still have
a configuration of the required form, except in the single case RR...RWWW...W, where
the last red number cannot be changed to blue. Hence all the terms above cancel with
their pairs under the involution, except for this one configuration, and thus we see that
the alternating sum is 1.
ut
From this, we easily obtain

Theorem 1 a)

M̄k(y) =
∑
|K|<k

(−1)k−|K|−1
(
n− |K| − 2

k − |K| − 1

)
ln

(∑
i/∈K

exp(yi)

)

(here
(−1

0

)
:= 1, and otherwise

(
p
q

)
:= 0 if p < q).

b)
Mk(y) ≤ M̄k(y) ≤Mk(y) + k lnn.

Proof: a) Indeed, M̄k(y) is just the sum of the first k (qj − γ)’s, and the alternating
sum of the binomial coefficients for a fixed K simplifies, using the identity

(
m
p

)
=
(
m−1
p

)
+(

m−1
p−1
)
, giving the expression above. (The conventions for the binomial coefficients for

p < q are designed to make this work for all cases.)
b) Note that, for k = 1, the only term corresponds to K = ∅, so that M̄1(0) =

ln
∑

i exp(0) = lnn, so the bound follows from Proposition 1.
ut
From (a), we see immediately that M̄k is a smooth function. As a sanity check, we see

that the expression in (a) is an empty sum for k = 0, while for k = n, the only nonzero
terms correspond to sets K with cardinality n− 1, and so we obtain

∑
i yi as desired.

Examples.
k = 1: As above the only term corresponds to K = ∅, and we find

M̄1(y) = ln

(∑
i

exp(yi)

)
.
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This function is sometimes called the soft maximum of the yi’s, and dates back to the
economic literature on consumer choice: see, e.g., Luce and Suppes [10]. In this context
it corresponds to the maximum utility of a consumer whose utilities for n objects are
perturbed by noise. The term soft maximum also sometimes refers to the weight vector(

exp(yi)∑
h exp(yh)

)
,

which corresponds to the probability with which such a consumer would choose each item.
This weight vector is also the gradient of M̄1.

M̄1 has also been used as a penalty function in nonlinear programming (without the
logarithm) — see for example Murphy [11] and Bertsekas [2] — and as a potential function
in theoretical computer science, starting with Shahrokhi-Matula [18].

We remark that Tunçel and Nemirovskii [19] have noted that M̄1 is not a self-
concordant function.

k = 2: Now K can be the empty set or any singleton, and we obtain

M̄2(y) = −(n− 2) ln

(∑
i

exp(yi)

)
+
∑
i

ln

∑
j 6=i

exp(yj)


= ln

∑
h6=2

exp(y[h])

+ ln

∑
h6=1

exp(y[h])

+

∑
i≥3

ln

(
1−

exp(y[i])∑
h exp(yh)

)
.

The second expression is recommended for accurate computation. Note that, if the compo-
nents of y are well separated, the sum in the first (second) term is dominated by exp(y[1])
(exp(y[2])) and the terms in the last sum are all small. Observe also that, even for M̄1,
it is worth ordering the components of y first and then evaluating all terms of the form∑

i∈S exp(yi) by summing from the smallest to the largest, to avoid roundoff error. Also,
terms of the form ln(1 − z) should be carefully evaluated in case z is small in absolute
value; see the MATLAB function log1p, for example.

k = 3: Here K can be the empty set, any singleton, or any pair, and we find

M̄3(y) =

(
n− 2

2

)
ln

(∑
i

exp(yi)

)
− (n− 3)

∑
i

ln

∑
j 6=i

exp(yj)


+

∑
i<j

ln

∑
h6=i,j

exp(yh)


= ln

∑
h6=2,3

exp(y[h])

+ ln

∑
h6=1,3

exp(y[h])

+ ln

∑
h≥3

exp(y[h])


+

∑
1≤i≤3

∑
j≥4

ln

(
1−

exp(y[j])∑
h6=i exp(y[h])

)
− n− 2

2

∑
i≥4

ln

(
1−

exp(y[i])∑
h exp(yh)

)

+
1

2

∑
4≤i 6=j≥4

ln

(
1−

exp(y[j])∑
h6=i exp(y[h])

)
.
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Again, the last expression is recommended for numerically stable computation.
ut
We remark that the formula for the soft maximum is fundamental here; in fact, the

other smoothed max k-sums can be derived from it as follows. It is not hard to prove that

Mk(y) =
∑
|K|<k

(−1)k−|K|−1
(
n− |K| − 2

k − |K| − 1

)
max{yi : i /∈ K}. (9)

Indeed, it is enough to establish this when the yi’s are all distinct (because we can take
a limit of such cases) and in decreasing order (because both sides are invariant under
permutation of the components of y). Then yj never appears on the right-hand side for
j > k, while for 1 ≤ j ≤ k it appears when K consists of {1, . . . , j − 1} together with
h := |K| − j + 1 elements of the set {j + 1, . . . , n} of cardinality n− j. Thus h runs from
0 to k− j (since |K| < k) and for each such h there are

(
n−j
h

)
sets K, each with the same

coefficient, and since |K| = h+ j − 1, the total coefficient of yj is

k−j∑
h=0

(−1)k−j−h
(
n− j − h− 1

k − j − h

)(
n− j
h

)
.

This is 1 by (8) with n − j, k − j, and h replacing n, p, and j. Now if we replace each
maximum on the right-hand side of (9) by its soft maximum, we obtain the smoothed
max-k-sum by Theorem 1. This derivation is relatively short, but fails to establish the
other properties of the smoothed max-k-sum.

In general, evaluating M̄k takes O((n)k−1) time (O(n lnn) for k = 1, 2 if the above
presorting strategy is used). The same is true for m̄n−k, while M̄n−k and m̄k can be
evaluated in this amount of time if negative Gumbel random variables are used.

If we want a more accurate (but rougher) approximation to Mk, we can use Gumbel
random variables scaled by α between 0 and 1. If we denote these by M̄k

α, we find by (7)
that

M̄k
α(y) = αM̄k(y/α),

and by Proposition 1 we find

Mk(y) ≤ M̄k
α(y) ≤Mk(y) + αk lnn.

The derivative of M̄k
α is that of M̄k at an argument scaled by 1/α, and thus the Lipschitz

constant for the derivative is increased by this factor.
Of course, these results transfer directly to functions: for example, if we define F̄ k(t) :=

M̄k(f1(t) . . . , fn(t)), it will be a smooth function of t and we have

F k(t) ≤ F̄ k(t) ≤ F k(t) + k lnn

for all t, and similarly F k(t) ≤ F̄ kα(t) ≤ F k(t) +αk lnn for F̄ kα defined in the obvious way.
We similarly define f̄k(t) := m̄k(f1(t), . . . , fn(t)). Then we have:

Proposition 3 If all fi’s are convex, so is F̄ k. If all are concave, so is f̄k.

Proof: We have
F̄ k(t) = Eξ1,...,ξn max

|K|=k

∑
i∈K

(fi(t)− ξi) + kEΞ.

For each K and fixed ξi’s, the sum above is convex, as the sum of convex functions. So
the maximum is also convex, and finally taking expectations preserves convexity. The
proof is analogous for f̄k. ut
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3 Smoothing by perturbing an optimization for-

mulation

Now we discuss smoothing Mk and mk by expressing them as values of optimization
problems and then adding perturbations. It is clear that the maximum of the yi’s can
be written as either the smallest number that exceeds each yi or as the largest convex
combination of the yi’s. Thus it is the optimal value of

P (M1) : min{x : x ≥ yi for all i}

and
D(M1) : max{

∑
i

uiyi :
∑
i

ui = 1, ui ≥ 0 for all i}.

These are probably the simplest and most intuitive dual linear programming problems of
all! The corresponding problems for the minimum are P (m1) : max{x : x ≤ yi for all i}
and D(m1) : min{

∑
i uiyi :

∑
i ui = 1, ui ≥ 0 for all i}.

For the max-k-sum, it is perhaps simplest to generalize D(M1) to get

D(Mk) : max{
∑
i

uiyi :
∑
i

ui = k, 0 ≤ ui ≤ 1 for all i},

whose dual is

P (Mk) : min{kx+
∑
i

zi : x+ zi ≥ yi, zi ≥ 0, for all i}.

The validity of these is easily confirmed by exhibiting feasible solutions for each with equal
objective values: ui = 1 for the indices i corresponding to the k largest components of
y, ui = 0 otherwise, and x = y[k], zi = max(yi − x, 0) for each i. For min-k-sums, we

have the corresponding problems D(mk) : min{
∑

i uiyi :
∑

i ui = k, 0 ≤ ui ≤ 1 for all i},
P (mk) : max{kx−

∑
i si : x− si ≤ yi, si ≥ 0, for all i}.

Note that P (Mk) and D(Mk) do not coincide with P (M1) and D(M1) when k = 1,
but it is easily seen that these two formulations are equivalent. This is immediate for the
dual problems, because the extra upper bounds on the ui’s are redundant. For the primal
problems, if x is feasible for P (M1), then x with zi = 0 for all i (briefly, (x, (0)), is feasible
in P (Mk) for k = 1 with the same objective value. Conversely, if (x, (zi)) is feasible for
P (Mk) with k = 1, then x+

∑
i zi is feasible for P (M1) with the same objective value.

Now we introduce perturbations, as in Nesterov [13]. We do this for D(Mk). Let U
denote its feasible region, and let g∗ denote a closed proper smooth σ-strongly convex
prox-function on U (σ > 0), so that g∗ is convex with g∗(v) ≥ g∗(u) +∇g∗(u)T (v − u) +
(σ/2)‖v − u‖2 for all u, v ∈ U . Here ‖ · ‖ is some appropriate norm on IRn, with dual
norm ‖z‖∗ := max{uT z : ‖u‖ ≤ 1}. We allow g∗ to be finite on some convex subset of
aff(U) = {u :

∑
i ui = k} containing U but require it to be +∞ off aff(U). (The reason

for using g∗ instead of g will appear in the next section.) Then g∗ attains its maximum
and minimum over the compact set U ; assume the minimum is attained at u0 (unique
by strong convexity) and without loss of generality that this minimum is 0; and let the
maximum be ∆. We sometimes write Uk or g∗k if we want to stress that they depend on
k. Then we let M̂k(y) be the optimal value of

D̂(Mk) : max{
∑
i

uiyi − g∗(u) : u ∈ U},
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and similarly m̂k(y) be that of

D̂(mk) : min{
∑
i

uiyi + g∗(u) : u ∈ U}.

If we want to highlight the fact that these depend on the prox-function, we write M̂k(y; g∗)
and m̂k(y; g∗), etc. We now have

Proposition 4 a) M̂k(y) is differentiable, with gradient

∇M̂k(y) = ug∗(y),

where ug∗(y) is the unique maximizer of D̂(Mk). Moreover, its gradient is Lipshitz con-
tinuous with constant 1/σ:

‖∇M̂k(y)−∇M̂k(z)‖∗ ≤ ‖y − z‖/σ.

b) (0- and n-consistency)

M̂0(y) = m̂0(y) = 0, and M̂n(y) = m̂n(y) =
∑
i

yi.

c) (sign reversal) m̂k(y) = −M̂k(−y).
d) (summability) If g∗n−k(u) = g∗k(1− u), where 1 := (1, . . . , 1),

M̂k(y) + m̂n−k(y) =
∑
i

yi.

e) (translation invariance) For η ∈ IR,

M̂k(y + η1) = M̂k(y) + kη, m̂k(y + η1) = m̂k(y) + kη.

f) (positive scaling invariance) If α > 0,

M̂k(αy;αg∗) = αM̂k(y; g∗), m̂k(αy;αg∗) = αm̂k(y; g∗).

g) (approximation)

Mk(y)−∆ ≤ M̂k(y) ≤Mk(y), mk(y) ≤ m̂k(y) ≤ mk(y) + ∆.

Proof: Part (a) follows from Nesterov [13], while part (g) is a direct consequence of
the bounds on g, and also appears in [13]. Parts (c), (e), and (f) are immediate from
trivial properties of optimization problems. Part (b) is a consequence of the facts that
U0 and Un are singletons and that therefore g∗ evaluated at the unique feasible point is
zero. For part (d), note that

M̂k(y)−
∑
i

yi = max{
∑
i

(ui − 1)yi − g∗k(u) : u ∈ Uk}

= max{−
∑
i

(1− ui)yi − g∗n−k(1− u) : 1− u ∈ Un−k}

= −min{
∑

viyi + g∗n−k(v) : v ∈ Un−k} = −m̂n−k(y).

ut
As in the previous section, we can define F̂ k(t) := M̂k(f1(t), . . . , fn(t)), and similarly

f̂k(t). We now show
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Proposition 5 If all fi’s are convex, so is F̂ k, while if all are concave, so is f̂k.

Proof: We only prove the first statement; the second follows similarly. Suppose 0 ≤ λ ≤
1. Then, if u is an optimal solution to D̂(Mk(f1((1 − λ)s + λt), . . . , fn((1 − λ)s + λt))),
we obtain

F̂ k((1− λ)s+ λt) =
∑
i

uifi((1− λ)s+ λt)− g∗(u)

≤ (1− λ)

(∑
i

uifi(s)− g∗(u)

)
+ λ

(∑
i

uifi(t)− g∗(u)

)
≤ (1− λ)F̂ k(s) + λF̂ k(t),

since u is also feasible for the problems for s and for t, establishing convexity. ut
Once again, we can use scaling to achieve a rougher but more accurate smooth ap-

proximation: if M̂k
α(y) := M̂k(y;αg∗) for 0 < α < 1, then (f) and (g) yield

Mk(y)− α∆ ≤ M̂k
α(y) ≤Mk(y),

and analogously for a scaled version of m̂k. Note that αg∗ is ασ-strongly convex, so the
bound on the Lipschitz constant for the gradient goes up by a factor 1/α.

It is straightfoward to derive the dual of D̂(Mk). We provide the details in a more
general setting in the next section. Here g denotes the convex conjugate of g∗, with

g(w) := max
u
{uTw − g∗(u)}.

Then g(0) = 0. (We assumed g∗ was closed and proper so that g∗ is also the convex
conjugate of g.) Here is the dual (compare with P (Mk) above):

P̂ (Mk) : min{kx+
∑
i

zi + g(w) : x+ zi ≥ yi − wi, zi ≥ 0, for all i}.

If we choose g∗ to be identically zero on aff(U), which satisfies all of our requirements
except strong convexity, then g(λ1) = kλ for λ ∈ IR and g(w) = +∞ otherwise, and our
perturbed problems reduce to the original problems P (Mk) and D(Mk). We will see in
the next section (Proposition 6) that we can require

∑
iwi = 0 without loss of generality.

We now choose particular prox-functions to see how such smooth approximations can
be calculated.

3.1 Quadratic prox-function

First we choose ‖ · ‖ to be the Euclidean norm ‖ · ‖2 on IRn, which is self-dual, and take

g∗(u) := g∗k(u) :=
β

2
(‖u‖2)2 −

β(k)2

2n

on aff(U), where β > 0, and +∞ otherwise. (We could take β = 1, but we allow the
redundant scaling to ease our generalization in the next section.) Then σ = β, and
∆ = βk(n− k)/[2n]. Note also that g∗k(u) = (β/2)(‖u− (k/n)1‖2)2, so that g∗n−k(v) =
g∗k(1− v) for v ∈ Un−k; hence the summability property holds.
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Now M̂k(y) can be computed in O(n) time after we calculate u := ug∗(y). The
necessary and sufficient optimality conditions for D(M̂k) give

yi − βui = x− si + zi, for all i,

x ∈ IR,
∑
i

ui = k, si ≥ 0, ui ≥ 0, siui = 0, zi ≥ 0, ui ≤ 1, zi(1− ui) = 0, for all i. (10)

From this, with λ := x/β, we obtain

ui = mid(0, yi/β − λ, 1) for all i,

where mid(·, ·, ·) denotes the middle of its three arguments. Note that each ui is a non-
increasing function of λ equal to 1 for sufficiently small and to 0 for sufficiently large λ.
We seek a value of λ so that

∑
i ui = k. We therefore sort the 2n numbers yi/β and

yi/β − 1. Suppose for simplicity that the yi’s are in nonincreasing order. Then for λ in
some subinterval formed by these 2n numbers, the first say h− 1 ui’s equal 1, the last say
n−j equal 0, and the remaining components equal yi/β−λ. (It is possible that j = h−1,
so that all ui’s are 1 or 0, and h must be k + 1. So we first check if yk ≥ yk+1 + β; if so
we can choose λ between yk+1/β and yk/β − 1 and we have our solution. Henceforth we
assume this is not the case, so that h ≤ k and some ui’s are fractional.)

Then the sum is

(h− 1) +

j∑
h

yi/β − (j − h+ 1)λ,

so that if this is the correct subinterval, λ is equal to [(k−h+ 1−
∑j

h yi/β]/[j−h+ 1]. If
this value falls in the subinterval, we have our optimal solution; if not, we know we should
be in a subinterval to the left (if λ is too small) or to the right (if too large) of the current
one. Thus we can perform a binary search, requiring at most log2(2k) steps. Each step
can be performed in O(1) time if we precompute all the cumulative sums

∑n
h yi/β in O(n)

time, because the partial sums required are just the differences of two such cumulative
sums. The total time required is then dominated by the sort, in O(n lnn) time.

We do not give formulas for the resulting M̂k(y), but note that, if the components of
y are well-separated, so that the gaps are all at least β, then the exceptional case above
occurs for any k, and the resulting u puts a weight 1 on the k largest yh’s and 0 on the
rest, so that M̂k(y) = Mk(y) −∆. This contrasts with the result of our approach using
randomization, and that of the following subsections, which are dependent on all the yi’s.

For this g∗, it is easy to see that g(w) = (‖w − w̄1‖2)2/[2β] + kw̄ + β(k)2/[2n], where
w̄ =

∑
iwi/n, so using the fact that we can assume

∑
iwi = 0, we have

P̂ (Mk) : min{kx+
∑
i

zi+
1

2β
(‖w‖2)2+

β(k)2

2n
: x+zi ≥ y−wi, zi ≥ 0 for all i,

∑
i

wi = 0}

and

D̂(Mk) : max{
∑
i

uiyi −
β

2
(‖u‖2)2 +

β(k)2

2n
:
∑
i

ui = k, 0 ≤ ui ≤ 1 for all i}.
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3.2 Single-sided entropic prox-function

Next we choose the 1-norm ‖ · ‖1 on IRn, with dual norm the ∞-norm, and take

g∗(u) := g∗k(u) :=
∑
i

ui lnui + k ln
(n
k

)
for u satisfying

∑
i ui = k, u ≥ 0, +∞ otherwise. Note that we do not take g∗ infinite

outside Uk, which would make g more complicated. This prox-function is appropriate for
the simplex (Nesterov [13]) and also suitable for the slightly more complicated Uk. Then
σ = 1/k and ∆ = k ln(n/k) (by an extension of the argument in Nesterov [13]). Now we
do not have g∗n−k(u) = g∗k(1− u), but we could use the alternative single-sided entropic
prox-function ḡ∗k(u) := g∗n−k(1− u) for m̂k to restore the summability property.

Once again M̂k(y) can be computed in O(n) time from u := ug∗(y). The necessary
and sufficient optimality conditions for D̂(Mk) now read

yi − 1− lnui = x− si + zi, for all i

together with (10), so that with λ = x+ 1, we obtain

ui = min(exp(yi − λ), 1) for all i,

where again λ is chosen so that
∑

i ui = k. We assume that the yi’s are sorted in
nonincreasing order, so that for some h, the first h− 1 uh’s are one, and the others equal
to (k − h + 1) exp(yi)/

∑n
h exp(yj), where exp(yh) ≤ exp(λ) =

∑n
h exp(yi)/(k − h + 1) ≤

exp(yh−1). The appropriate index h can again be found by binary search, so that the
total time required is O(n lnn).

Let us evaluate the corresponding M̂k(y), assuming that the critical index is h. Then
the first h − 1 terms in both the linear term and the perturbation yield

∑h−1
1 yi, while

the remainder give
n∑
h

ui(yi − [yi − λ]) =

n∑
h

uiλ = (k − h+ 1)λ,

so we obtain

M̂k(y) =
h−1∑
1

yi + (k − h+ 1) ln

(
n∑
h

exp(yi)

)
− (k − h+ 1) ln(k − h+ 1)− k ln

(n
k

)
.

Note that if k = 1, then h must also be 1, and we get ln(
∑

i exp(yi))− lnn, differing only
by a constant from our approximation using randomization. However, for larger k, our
formula is quite different, and much easier to evaluate.

For this prox-function, we find after some computation that

g(w) = k ln

(∑
i

exp(wi)

)
− k lnn.

Thus, again using the fact that we can assume
∑

iwi = 0, we have

P̂ (Mk) : min{kx+
∑
i

zi+k ln

(∑
i

exp(wi)

)
−k lnn : x+zi ≥ y−wi, zi ≥ 0 for all i,

∑
i

wi = 0}

and

D̂(Mk) : max{
∑
i

uiyi −
∑
i

ui lnui − k ln
(n
k

)
:
∑
i

ui = k, 0 ≤ ui ≤ 1 for all i}.
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3.3 Double-sided entropic prox-function

Finally we choose the 1-norm again and take

g∗(u) := g∗k(u) :=
∑
i

[ui lnui + (1− ui) ln(1− ui)] + k ln
(n
k

)
+ (n− k) ln

(
n

n− k

)
,

which is also appropriate for Uk. Then σ = 1/k + 1/(n − k) and ∆ = k ln(n/k) + (n −
k) ln(n/[n− k]), again by using an extension of the arguments in Nesterov [13]. We have
regained the property that g∗n−k(u) = g∗k(1−u), so the summability property holds with
no adjustments.

In this case, the necessary and sufficient optimality conditions for D̂(Mk) read

yi − lnui + ln(1− ui) = x− si + zi, for all i

together with (10), so that with λ := exp(x), we have

ui
1− ui

=
exp(yi)

λ
, or ui =

exp(yi)

λ+ exp(yi)
for all i.

Now we have to make a nonlinear search to find the appropriate λ so that
∑

i ui = k.
This is straightforward, but we do not have a finite procedure and thus no computational
complexity.

For this prox-function, determining g at a particular w also requires such a nonlinear
search to find the maximizing u, and so we do not state the corresponding perturbed
primal problem, but the perturbed dual is

D̂(Mk) : max
∑

i uiyi −
∑

i[ui lnui + (1− ui) ln(1− ui)]− k ln
(
n
k

)
− (n− k) ln

(
n

n−k

)
∑

i ui = k,
0 ≤ ui ≤ 1 for all i.

4 Max-k-sums and min-k-sums in a general cone

Let E be a finite-dimensional real vector space, and let E∗ denote its dual, the space of
all linear functions on E. We use 〈u, x〉 to denote the result of u ∈ E∗ acting on x ∈ E.
Let K be a closed convex cone in E that is pointed (K∩ (−K) = {0}) and has a nonempty
interior. Then its dual cone K∗ ⊆ E∗, defined by

K∗ := {u ∈ E∗ : 〈u, x〉 ≥ 0 for all x ∈ K},

shares the same properties, and K∗∗ = K. K and K∗ define partial orders in E and E∗ by

x � z, x, z ∈ E means x− z ∈ K, u �∗ v, u, v ∈ E∗ means u− v ∈ K∗.

We also write z � x and v �∗ u with the obvious definitions.
Suppose y1, . . . , yn ∈ E. We would like to define the max-k-sum and the min-k-sum

of the yi’s in E (and maybe smooth approximations to them) to conform with their
definitions in IR. We write (yi) for (y1, . . . , yn) ∈ En for ease of notation. Our prime
examples for E and K are:

a) IR and IR+;
b) IRp and IRp

+;
c) the space of real (complex) symmetric (Hermitian) d × d matrices, and the subset

of positive semidefinite matrices; and
d) IR1+p and the second-order cone {(ξ;x) ∈ IR1+p : ξ ≥ ‖x‖2}.
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4.1 Symmetric cones

The approach to smoothing we took in Section 2 presupposes that unsmoothed max-k-
sums and min-k-sums have already been defined, but we can use the formulae resulting
from that analysis in a subclass of cones including those above. This requires that the
functions ln and exp be defined in E. We therefore recall the definition of symmetric
cones, which are those that are self-dual (there is an isomorphism between K and K∗) and
homogeneous (for all x, y ∈ int(K), there is an automorphism of K taking x to y). Such
cones have been characterized (they are the direct products of cones of the forms above
as well as positive semidefinite matrices over quaternions and one exceptional cone), and
a detailed study appears in Faraut and Koranyi [4]. Moreover, these cones coincide with
the cones of squares of Euclidean Jordan algebras [4], which are vector spaces endowed
with a commutative bilinear product ◦ : E × E → E satisfying certain properties. For
our purposes, the salient facts are these:

i) There is a unit e ∈ E with e ◦ x = x for all x ∈ E.
ii) An idempotent in E is a nonzero element c with c2 := c ◦ c = c. A complete system

of orthogonal idempotents is a set {c1, . . . , cm} of idempotents with ci ◦ cj = 0 for i 6= j
and c1 + · · ·+ cm = e. For every x ∈ E, there is a unique complete system of orthogonal
idempotents as above and a unique set of distinct real numbers λ1, . . . , λm with

x = λ1c1 + · · ·+ λmcm.

This is called the spectral decomposition of x, and the λ’s are the eigenvalues of x. It is
easy to see that the cone of squares K consists of those elements with nonnegative eigen-
values, and its interior those with positive eigenvalues. We define a primitive idempotent
as one that cannot be written as the sum of two (necessarily orthogonal) idempotents.
The idempotents cj above may not be primitive, but if not they can be subdivided and
we arrive at another (not necessarily unique) decomposition:

x = µ1d1 + · · ·+ µpdp

with the dj ’s primitive idempotents, and each µj one of the λi’s. We can define the
trace of element x as the sum of these µj ’s (and hence the sum of its eigenvalues with
multiplicities), and an inner product on E by (x, z) := trace(x ◦ z), so that orthogonal
above also implies orthogonal in the inner product. In fact the converse holds also for
vectors in the cone: indeed if x, z ∈ K, (x, z) = 0 if and only if x◦ z = 0: see, for instance,
Faybusovich [5].

In examples (a) and (b), ◦ is (componentwise) product, e is a vector of ones, the unit
coordinate vectors form a complete system of orthogonal idempotents, as do the sums of
unit coordinate vectors in any partition of the index set {1, . . . , p}, from which the spectral
decomposition of any x is immediate. In example (c) we let X ◦ Z := (XZ + ZX)/2.
Then E is the identity matrix, any projection matrix is an idempotent, and the spectral
decomposition of X corresponds to its distinct eigenvalues and the projections onto their
corresponding eigenspaces. Finally, in (d), we set (ξ;x)◦(ζ; z) := (ξζ+xT z; ξz+ζx). Then
e = (1; 0), and any pair {(1/2; z/2), (1/2;−z/2)} for ‖z‖2 = 1 forms a complete system
of orthogonal idempotents, as does e alone. Any (ξ;x) with x nonzero can be written
as a linear combination of such a pair of elements, with z = x/‖x‖2, and any (ξ; 0) is a
multiple of e alone. It is easy to check that the cones of squares in these examples are
as given above. Moreover, the norm ‖x‖ := (x, x)1/2 is the Euclidean norm for examples
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(a) and (b), the Frobenius norm for example (c), and
√

2 times the Euclidean norm for
example (d). We can also define the 1- (∞-) norm of x as the sum (maximum) of the
absolute values of the µj ’s in the decomposition above.

We can now define exp and ln. For any x ∈ E with spectral decomposition as above,
we set

exp(x) := exp(λ1)c1 + · · ·+ exp(λm)cm,

and if moreover all eigenvalues of x are positive, we set

ln(x) := ln(λ1)c1 + · · ·+ ln(λm)cm.

Note that these two functions are inverses of one another.
Then for any set y1, . . . , yn of elements of E, each exp(yi), and hence their sum, lies

in int(K), and so

M̄1((yi)) := ln

(∑
i

exp(yi)

)
is defined. Moreover, for any j,

∑
i exp(yi) � exp(yj), and since by Löwner [9] and

Koranyi [8] the function ln is operator monotone, we have

M̄1((yi)) � yj

for all j. We can similarly define M̄k((yi)) for any k using part (a) of Theorem 1, but we do
not have a proof that this dominates all sums

∑
j∈K yj with |K| = k. The computational

cost of computing this expression is that of O((n)k−1) spectral decompositions (O(n) for
k = 1), together with some lesser algebra.

4.2 Definition by optimization formulations

We now return to the general case, but we will also discuss the case of symmetric cones
when refined results are possible. We first seek to extend P (Mk) and D(Mk). If we
translate them directly, we see that the objective function of P (Mk) becomes a vector in
E, and we need to replace the one in the constraints of D(Mk). We therefore choose some

v ∈ int(K∗),

and define

P (Mk((yi)) : min{k〈v, x〉+
∑
i

〈v, zi〉 : x+ zi � yi, zi � 0, for all i}

and
D(Mk((yi))) : max{

∑
i

〈ui, yi〉 :
∑
i

ui = kv, 0 �∗ ui �∗ v for all i}.

Once again we can use simplified problems when k = 1: we can eliminate the zi’s in
the primal problem and the upper bounds on the ui’s in the dual. The equivalence is
straightforward. Note that x and the zi’s lie in E, while the ui’s lie in E∗. Let U := Uk

denote the feasible region of D(Mk((yi))) in E∗n.
Let g∗ = g∗k be a closed proper convex prox-function on U . (We have removed the

requirements of smooth and σ-strongly convex because we no longer establish smoothness
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of the resulting max-k-sum.) We allow g∗ to be finite on some subset of aff(U) = {(ui) ∈
E∗n :

∑
i ui = kv} containing U but it must be +∞ off aff(U). Let g be its convex

conjugate on En (with the natural scalar product 〈(ui), (wi)〉 :=
∑

i〈ui, wi〉). Then we
can define perturbed versions of the problems above:

P̂ (Mk((yi))) : min{k〈v, x〉+
∑
i

〈v, zi〉+ g((wi)) : x+ zi � yi − wi, zi � 0, for all i}

and

D̂(Mk((yi))) : max{
∑
i

〈ui, yi〉 − g∗((ui)) :
∑
i

ui = kv, 0 �∗ ui �∗ v for all i}.

If g∗ is identically 0 on aff(U), so that g((wi)) is k〈v, w̄〉 if w1 = · · · = wn = w̄ and
g((wi)) = +∞ otherwise, these reduce to the unperturbed problems above.

Let us demonstrate that these are indeed duals. If we start with D̂(Mk((yi))), and
associate multipliers x for the equality and si and zi for the inequality constraints, the
dual becomes

minx∈E,(si�0),(zi�0) max(ui) (
∑

i[〈ui, yi〉+ 〈ui, si〉+ 〈(v − ui), zi〉 − 〈ui, x〉] + k〈v, x〉 − g∗((ui)))
= minx,(si�0),(zi�0) (k〈v, x〉+

∑
i〈v, zi〉+ g((yi + si − zi − x))) .

It is easy to see that the latter is equivalent to P̂ (Mk((yi))). Conversely, if we start with
P̂ (Mk((yi))) and associate multipliers ui with the (first set of) inequality constraints, the
dual is

max
(ui�∗0)

min
x,(zi�0),(wi)

(k〈v, x〉+
∑
i

[〈v, zi〉 − 〈ui, x〉 − 〈ui, zi〉+ 〈ui, yi〉 − 〈ui, wi〉] + g((wi))).

The minimum is −∞ unless
∑

i ui = kv and ui �∗ v for all i, and so this reduces to

D̂(Mk) above.
Although weak duality is immediate from this derivation, we establish it directly to

show the conditions for strong duality to hold. If (x, (zi)) is feasible in P (Mk) and (ui)
in D(Mk), then

k〈v, x〉+
∑
i

〈v, zi〉 −
∑
i

〈ui, yi〉 =
∑
i

[〈v − ui, zi〉+ 〈ui, x+ zi − yi〉 ≥ 0,

with equality if and only if

〈v − ui, zi〉 = 〈ui, x+ zi − yi〉 = 0 for all i. (11)

Similarly, if (x, (zi), (wi)) is feasible in P̂ (Mk) and (ui) in D̂(Mk), then

k〈v, x〉+
∑
i

〈v, zi〉+ g((wi))−
∑
i

〈ui, yi〉+ g∗((ui))

=
∑
i

[〈v − ui, zi〉+ 〈ui, x+ zi − yi〉] + g((wi)) + g∗((ui))

≥
∑
i

[〈v − ui, zi〉+ 〈ui, x+ zi − yi〉] +
∑
i

〈ui, wi〉

=
∑
i

[〈v − ui, zi〉+ 〈ui, x+ zi − yi + wi〉] ≥ 0,
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with equality throughout if and only if 〈v−ui, zi〉 = 〈ui, x+ zi− yi +wi〉 = 0 for all i and
g((wi)) + g∗((ui)) =

∑
i〈ui, wi〉.

Let us demonstrate that all these problems have optimal solutions. First, for k = 0, the
only feasible solution to D(M0((yi))) or D̂(M0((yi))) is (0), with objective value 0. (We
write (0) for (0, . . . , 0) ∈ En, and similarly (v) ∈ E∗n and (η) ∈ En for η ∈ E.) Let x̄ lie in
int(K), and then choose λ with λ positive and sufficiently large that λx̄± yi ∈ int(K) for
all i, and replace x̄ by λx̄. Then (x̄, (0)) is feasible in P (M0) (and (x̄, (0), (0)) in P̂ (M0))
with objective value 0, and hence optimal. If k = n, then the only feasible solution to
D(Mn((yi))) or D̂(Mn((yi))) is (v), with objective value

∑
i〈v, yi〉. Also, (−x̄, (x̄ + yi)),

with x̄ as above, is feasible in P (Mn) (and (−x̄, (x̄ + yi), (0)) in P̂ (Mn)) with the same
objective value, and hence optimal. Now suppose 0 < k < n. Then ((k/n)v) is feasible in
D(Mk) and in D̂(Mk), and in fact satisfies all inequality constraints strictly. Moreover,
the feasible region of these two problems is compact, and hence an optimal solution exists.
Both P (Mk) and P̂ (Mk) have feasible solutions as above, and the existence of a strictly
feasible solution to their duals implies that they also have optimal solutions, with no
duality gap.

We now prove

Proposition 6 Without loss of generality, we can restrict (wi) to sum to zero in P̂ (Mk((yi)).

Proof: Let us write wi as the sum of w′i := wi− w̄ and w̄, where as before w̄ :=
∑

iwi/n.
Then

g((wi)) = max
u
{
∑
i

〈ui, w̄ + w′i〉 − g∗((ui))}

= k〈v, w̄〉+ max
u
{
∑
i

〈ui, w′i〉 − g∗((ui))}

= k〈v, w̄〉+ g((w′i)),

since g∗ is only finite if
∑

i ui = kv. So, for any x, (zi),

k〈v, x〉+
∑
i

〈v, zi〉+ g((wi)) = k〈v, x+ w̄〉+
∑
i

〈v, zi〉+ g((w′i)).

Hence if (x, (zi), (wi)) is feasible in P̂ (Mk), so is (x+w̄, (zi), (w
′
i)) with the same objective

function, and
∑

iw
′
i = 0. ut

Correspondingly we define problems for the min-k-sum and their perturbations; we
give only the latter:

P̂ (mk((yi))) : max{k〈v, x〉 −
∑
i

〈v, si〉 − g((wi)) : x− si � yi + wi, si � 0, for all i}

and

D̂(mk((yi))) : min{
∑
i

〈ui, yi〉+ g∗((ui)) :
∑
i

ui = kv, 0 �∗ ui �∗ v for all i}.

Of course, the values of all these problems are scalars, and so will not provide the
definitions we need. We therefore set

Mk((yi)) := {kx+
∑
i

zi : (x, (zi)) ∈ Argmin(P (Mk((yi))))}
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and analogously

mk((yi)) := {kx−
∑
i

si : (x, (si)) ∈ Argmax(P (mk((yi))))}.

(Here Argmin and Argmax denote the sets of all optimal solutions to the problem
given.) For the perturbed problems, we add the extra constraint

∑
iwi = 0 to remove the

ambiguity from x, and define

M̂k((yi)) := {kx+
∑
i

zi : (x, (zi), (wi)) ∈ Argmin(P̂ (Mk((yi)))),
∑
i

wi = 0}

and

m̂k((yi)) := {kx−
∑
i

si : (x, (si), (wi)) ∈ Argmax(P̂ (mk((yi)))),
∑
i

wi = 0}.

We can now state some properties of these functions.

Theorem 2 a) (0- and n-consistency)

M0((yi)) = m0((yi)) = M̂0((yi)) = m̂0((yi)) = 0, and

Mn((yi)) = mn((yi)) = M̂n((yi)) = m̂n((yi)) =
∑
i

yi.

b) (sign reversal) mk((yi)) = −Mk((−yi)) and m̂k((yi)) = −M̂k((−yi)).
c) (summability)

Mk((yi)) = {
∑
i

yi} −mn−k((yi)),

and if g∗n−k((ui)) = g∗k((v − ui)),

M̂k((yi)) = {
∑
i

yi} − m̂n−k((yi)).

d) (translation invariance) For η ∈ E,

Mk((yi + η)) = Mk((yi)) + {kη}, mk((yi + η)) = mk((yi)) + {kη},

and
M̂k((yi + η)) = M̂k((yi)) + {kη}, m̂k((yi + η)) = m̂k((yi)) + {kη}.

e) (positive scaling invariance) If α > 0,

Mk((αyi)) = αMk((yi)), mk((αyi)) = αmk((yi))

and
M̂k((αyi);αg

∗) = αM̂k((yi); g
∗), m̂k((αyi);αg

∗) = αm̂k((yi); g
∗).

f) For any K of cardinality k, and any x′ ∈Mk((yi)), x
′ �

∑
i∈K yi.
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Proof: We generally prove only the results for Mk and M̂k, or only for M̂k and m̂k;
the other cases follow by similar arguments.

For (a), we note that both U0 and Un have only one element, (0) and (v) respectively,
giving objective values of 0 and 〈v,

∑
i yi〉 respectively. In P (M0((yi))) and P̂ (M0((yi))),

we can achieve objective value 0 by choosing (x̄, (0)) or (x̄, (0), (0)), and the only way
to achieve this value is to set all zi’s to zero. In P (Mn((yi))) and P̂ (Mn((yi))), the
constraints imply nx+

∑
i zi �

∑
i yi, and hence 〈v, nx+

∑
i zi〉 ≥ 〈v,

∑
i yi〉, and the only

way to achieve equality is to have nx +
∑

i zi =
∑

i yi. (Note that g((wi)) = 0 for any
(wi) with

∑
iwi = 0.)

Suppose (x, (si), (wi)) ∈ Argmax(P̂ (mk((yi)))) with
∑

iwi = 0. Then it is also a
minimizing solution to min{k〈v,−x〉 +

∑
i〈v, si〉 + g((wi)) : −x + si � −yi − wi, si �

0, for all i}, which implies that (−x, (si), (wi)) is an optimal solution to P̂ (Mk(−y)).
Also, kx−

∑
i si = −(k(−x) +

∑
i si). The argument can be reversed, thus yielding (b).

Next consider (c). If the stated condition holds, and
∑

iwi = 0, then

gn−k((wi)) = max{
∑
i

〈ui, wi〉−g∗n−k((ui))} = max{
∑
i

〈v−ui,−wi〉−g∗k((v−ui))} = gk((−wi)).

Now suppose (x, (zi), (wi)) ∈ Argmin(P̂ (Mk((yi)))) with
∑

iwi = 0, and let si := x+zi−
yi + wi � 0 for all i. Then yi − wi − x+ si = zi � 0 and

kx+
∑
i

zi = kx+
∑
i

(yi − wi − x+ si) =
∑
i

yi − [(n− k)x−
∑
i

si]. (12)

Moreover, its objective value is

〈v, kx+
∑
i

zi〉+ gk((wi)) =
∑
i

〈v, yi〉 − [〈v, (n− k)x−
∑
i

si〉 − gn−k((−wi))],

and since the argument can be reversed, we see that (x, (si), (−wi)) ∈ Argmax(P̂ (mn−k((yi)))).
Then (12) gives (c).

Part (d) follows immediately from the fact that (x+η, (zi)(wi)) is feasible for P̂ (Mk((yi+
η))) if and only if (x, (zi), (wi)) is feasible for P̂ (Mk((yi))), with objective value the con-
stant k〈v, η〉 larger.

Note that (αg∗)∗((αwi)) = max(ui){α
∑

i〈ui, wi〉 − αg∗((ui))} = αg((wi)). Thus if

(x, (zi), (wi)) is feasible for P̂ (Mk((yi); g
∗)), then (αx, (αzi), (αwi)) is feasible for P̂ (Mk((αyi);αg

∗)),
with objective value a factor α larger. Hence one is optimal if and only if the other is,
and this yields (e).

Finally, for any K of cardinality k, and any feasible solution (x, (zi)) to P (Mk(y)),
kx+

∑
i zi � kx+

∑
i∈K zi �

∑
i∈K yi. This proves (f). Note that we cannot obtain such

a result for the perturbed problem, since we cannot control the effect of the wi’s. While
the objective values of the problems and their perturbations are closely related, we cannot
conclude the same about their sets of optimal solutions.
ut
Here is a small example to show that Mk(y) need not be a singleton. Let E = E∗ = IR3

with 〈u, x〉 := uTx. Let K := {x ∈ E : x1 ≥ |x2|, x1 > |x3|}, v = (1; 0; 0), n = 2, and
y1 = (0; 1; 0), y2 = (0;−1; 0). Then M1((yi)) = {(1; 0; ξ) : −1 ≤ ξ ≤ 1} Indeed, any
x in this set, with z1 = z2 = 0, is feasible in P (M1((yi))) with objective 1, while u1 =
(1/2; 1/2; 0) and u2 = (1/2;−1/2; 0) are feasible in D(M1((yi))) with the same objective.
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Given this lack of uniqueness, we find the summability property rather remarkable: the
set of max-k-sums corresponds exactly to that of min-(n− k)-sums after reflection in the
point

∑
i yi/2.

If E = IRm and K = IRm
+ , then Mk((yi)) is the componentwise max-k-sum. If g∗ (and

hence g) is separable, M̂k((yi)) is the componentwise perturbed max-k-sum. Indeed, if
E and K are products of lower-dimensional spaces and cones, then again max-k-sums
are obtained by finding max-k-sums for each component, and similarly for the perturbed
versions if g∗ is separable.

We have suppressed the dependence of Mk and M̂k on v, but it is present. Suppose
E = E∗ = IR3 as above, but now K := {x ∈ E : x1 ≥ ‖(x2;x3)‖2}, the second-order
cone. Then for y1 and y2 as above, the feasible region of P (M1((yi))) (looking just at
x + z1 + z2) is the intersection of two translated second-order cones with vertices at y1
and y2, a convex set with a “ridge” at {x = (ξ; 0; ζ) : ξ ≥ (1+ζ2)1/2}, and different points
on this hyperbola will be selected by different vectors v = (1; 0;µ), |µ| < 1.

This example also shows that, even if M1((yi)) is a singleton, it may not satisfy
the associative law that M1(y1,M

1(y2, y3)) = M1(M1(y1, y2), y3). Indeed, let y1 be like
M1(y2, y3) but defined with a different v so that y1 6= M1(y2, y3). Then y1 � y2, so
M1(y1, y2) = y1, and y1 � y3, so M1(M1(y1, y2), y3) = M1(y1, y3) = y1. However, as in
the example above, y1 is not greater than or equal to M1(y2, y3) (defined with v), and so
M1(y1,M

1(y2, y3)) 6= y1.
Computing one element (or all elements) of Mk((yi)) requires finding one (or all) opti-

mal solutions of P (Mk((yi))), which is a linear cone programming problem over (products
of) the cone K. Similarly, for M̂k((yi)), we need one or all optimal solutions of a similar
problem, but with a nonlinear objective function. For example, we can take β to be a
positive self-adjoint operator from E∗ to E, and define

g∗((ui)) := (1/2)
∑
i

〈ui, βui〉〉 − (k)2〈v, βv〉/[2n] (13)

on aff(U) and +∞ otherwise. Then it is easy to see that g((wi)) = (1/2)
∑

i〈β−1(wi −
w̄), wi− w̄〉+ k〈v, w̄〉+ (k)2〈v, βv〉/[2n], where w̄ :=

∑
iwi/n. (Compare with Subsection

3.1.) Then we need to solve a quadratic cone problem over K, but now there is no easy
search to find optimal solutions. However, we note that for this prox-function,

g∗k((ui)) = (1/2)
∑
i

〈ui −
k

n
v, β(ui −

k

n
v)〉

on aff(Uk), so g∗n−k((ui)) = g∗k((v − ui)) on aff(Un−k), and thus summability holds.

4.3 Symmetric cones redux

We now return to the special case of symmetric cones for the optimization approach
to max-k-sums. As we have noted, such cones have a natural inner product (x, z) :=
trace(x◦z), and so we can identify E∗ with E. We can therefore choose v in E, and make
the natural choice v := e, the unit element. Also, all ui’s now lie in E.

An important consequence of K being symmetric is uniqueness:

Theorem 3 In the setting above, the set Mk((yi)) is a singleton. Moreover, if g is strictly
convex on {(wi) :

∑
iwi = 0}, then M̂k((yi)) is a singleton.
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(We remark that, with some regularity conditions on their domains, g is strictly convex
as above if and only if g∗ is differentiable on the relative interior of its domain in aff(U);
see Rockafellar [16], Section 26.)
Proof: We know that both P (Mk((yi))) and D(Mk((yi))) have optimal solutions, say
(x, (zi)) and (ui), with no duality gap, so that by the conditions (11), (e − ui, zi) =
(ui, x + zi − yi) = 0 for all i. Also, e − ui, zi, ui, and x + zi − yi all lie in K, so by the
properties of Euclidean Jordan algebras, we have (e− ui) ◦ zi = ui ◦ (x+ zi − yi) = 0 for
all i. This implies∑

ui ◦ yi =
∑
i

ui ◦ (x+ zi) = (
∑
i

ui) ◦ x+
∑
i

ui ◦ zi = ke ◦ x+
∑
i

e ◦ zi = kx+
∑
i

zi.

Hence any optimal solution to P (Mk((yi))) must have kx+
∑

i zi equal to
∑

i ui ◦ yi for
some fixed optimal solution to D(Mk((yi))).

Next consider P̂ (Mk((yi))) and D̂(Mk((yi))). Since g is strictly convex, the (wi) part
of an optimal solution to the former (with

∑
iwi = 0) must be unique. But if (x, (zi))

is part of an optimal solution to P̂ (Mk((yi))) with this (wi), then it is also an optimal
solution to P (Mk((yi − wi))), which as we have shown above is unique. ut

Note that the proof shows how the unique element of Mk((yi)) can be obtained from
an optimal solution to the dual problem.

In general, computing Mk((yi)) requires the solution of a linear symmetric cone pro-
gramming problem. Since a quadratic objective can be reformulated in either second-order
or semidefinite programming as a linear objective with additional constraints, the same
is true of M̂k((yi)) when g is the quadratic function given above in (13). However, we
cannot typically obtain the solution in closed form, even with a simple search. The prob-
lem is that the multiplier for the constraint

∑
i ui = ke is an element of E, not a scalar.

We can also use single- or double-sided entropic prox-functions, where each ui lnui is
replaced by (ui, lnui); these are convex by results of Faybusovich [6]. But again compu-
tation is complicated by the need for a search over x ∈ E; moreover, the derivatives of
these prox-functions are not always easy, since they involve the Peirce decomposition of
the argument: see Faraut and Koranyi [4, 8].

The one special case where the solution can be obtained is the following. We say x and
y in E operator commute if x ◦ (y ◦ z) = y ◦ (x ◦ z) for all z ∈ E. Now suppose y1, . . . , yn
pairwise operator commute. Then, by [4], there is a complete set of orthogonal primitive
idempotents {c1, . . . , cm} such that all yi’s are linear combinations of these, so that

yi = y1i c1 + · · ·+ ymi cm

for all i. Then the unique element of Mk((yi)) is

y1c1 + · · ·+ ymcm,

where each yj is the max-k-sum of the yji , i = 1, . . . , n. Indeed, we can construct optimal

solutions (xj , (zji ) and (uji ) to each problem P (Mk(yj1, . . . , y
j
n)) and D(Mk(yj1, . . . , y

j
n)),

and then set x := x1c1 + · · · + xmcm and similarly for zi and ui. These give feasible
solutions to P (Mk((yi)) and D(Mk((yi)), and optimality follows from (11). We can do
the same for the perturbed versions with suitable perturbations. Let us choose g∗((ui)) :=
(β/2)

∑
i(ui− (k/n)e, ui− (k/n)e) with β > 0, which is β-strongly convex with respect to

the norm ‖(ui)‖ := (
∑

i(ui, ui))
1/2. Its conjugate is g((wi)) = k(e, w̄) + 1/(2β)

∑
i(wi −
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w̄, wi − w̄) with w̄ as before. Then the unique element of M̂k((yi)) can be obtained as
above from the solutions to P̂ (Mk(yj1, . . . , y

j
n) and its dual. The key is that each vector

constructed in E is a linear combination of the cj ’s, and since (λ1c1 + · · ·+ λmcm, λ1c1 +
· · ·+λmcm) =

∑
j(λj)

2, the objective function splits into a component for each j, as does
feasibility. We can similarly obtain closed form solutions if we use a single-sided entropy
prox-function. The situation is analogous to that where E = IRm, K = IRm

+ .
Suppose we wish to compute M1(y1, y2). Then by translation invariance, this is (y1 +

y2)/2 + M1((y1 − y2)/2, (y2 − y1)/2). Trivially ±(y1 − y2)/2 operator commute, and if
(y1 − y2)/2 = λ1c1 + · · ·+ λmcm is a spectral decomposition, we find

M1(y1, y2) = (y1 + y2)/2 + |λ1|c1 + · · ·+ |λm|cm.

As we mentioned above, a natural choice for v is the unit element e. However, if we
can compute max-k-sums for v = e, we can compute them for any v ∈ int(K). Indeed,
because K is homogeneous, there is a self-adjoint operator φ taking e to v and K onto
itself. Then if we seek Mk

v ((yi)) (where the subscript indicates that e has been replaced by
v), we note that (x, (zi)) ∈ Argmin(P (Mk

v ((yi)))) iff (φx, (φzi)) ∈ Argmin(P (Mk((φyi)))),
since (φe, kx +

∑
i zi) = (e, kφx +

∑
i φzi), and the feasibility conditions are equivalent.

Hence
Mk
v ((yi)) = φ−1Mk((φyi)).

4.4 Final notes

We might consider

lim
α↓0

α ln

(∑
i

exp(yi/α)

)
,

if the limit exists, as a definition of the maximum of y1, . . . , yn. Does this limit exist? If
it does, it may not equal the unique element of M1((yi)); e.g., if

y1 =
1

25

[
41 12
12 34

]
, y2 =

1

25

[
34 12
12 41

]
,

then some computation shows that

lim
α↓0

α ln

(∑
i

exp(yi/α)

)
=

[
2 0
0 2

]
, M1(y1, y2) =

{
1

25

[
41 12
12 41

]}
.

Throughout, we have thought of k (for Kronecker?) as an integer, and this was
necessary for our initial definitions and for smoothing by randomization. But for our
development using optimization formulations, k could be any real number between 0 and
n, and all the proofs go through. Hence for example the max-5/2-sum of y1, . . . , y6 is their
min-7/2-sum reflected in

∑
i yi/2.
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