Optimal Experimental Design Problem

 $\begin{array}{ll} \max & \log \det XUX^T\\ \mathrm{st.} & e^T u = 1\\ & u \geq 0, \end{array}$

where $X = (x_1, \ldots, x_p)$ and U = Diag(u). We aim to take the Lagrangian Dual, but first we reformulate this as

$$\begin{array}{l} \max & \log \det A & (D) \\ \text{st.} & A - XUX^T = 0 \\ & e^T u = 1 \\ & u \ge 0 \\ & A \in \mathbb{S}^{m \times m}, \end{array}$$

where $\mathbb{S}^{m \times m}$ represents the space of symmetric $m \times m$ matrices. Similarly, $\mathbb{S}^{m \times m}_+$ denotes the positive semi-definite cone, and $\mathbb{S}^{m \times m}_{++}$ defines positive definite $m \times m$ matrices.

Trace Inner Product

Suppose $A, B \in \mathbb{R}^{m \times n}$. We can define an inner product as

$$\langle A, B \rangle = A \bullet B = \operatorname{trace} (A^T B) = \sum_{i,j} a_{ij} b_{ij}$$

Because trace (UV) = trace(VU), the commutative property holds. Consider, for $A \in \mathbb{R}^{m \times m}$ with det A > 0,

$$\begin{split} \phi(A) &= \log \det A, \\ \theta(\lambda) &:= \phi(A + \lambda e_i e_j^T) \\ &= \log \det(A + \lambda e_i e_j^T) \\ &= \log \left[\det(A) \left(1 + \lambda e_j^T A^{-1} e_i \right) \right] \\ &= \log \det A + \log \left(1 + \lambda e_j^T A^{-1} e_i \right) \end{split}$$

This tells us the directional derivative of ϕ is given by

$$\phi'(A; e_i e_j^T) = e_j^T A^{-1} e_i$$

= trace $(e_j^T A^{-1} e_i)$
= trace $(A^{-1} e_i e_j^T)$
= $A^{-T} \bullet e_i e_j^T$,

and since $\{e_i e_j^T\}$ is a basis for $\mathbb{R}^{m \times m}$ and ϕ is smooth, we have

$$\phi'(A;D) = A^{-T} \bullet D.$$

Thus, $\nabla \phi(A) = A^{-T}$, and for A symmetric, $\nabla \phi(A) = A^{-1}$.

Aside: If we write $\psi(A) := \phi(A; D) = A^{-1} \bullet D$, where A, D are symmetric, we find $\psi'(A; E) = -\text{trace} (A^{-1}DA^{-1}E)$. This is analogous to the second derivative, and can be used to show $-\log \det$ is convex in the positive semi-definite cone.

Lagrangian Dual

Now consider (D). This is equivalent to

$$\max_{A \in \mathbb{S}^{m \times m}, u \ge 0} \min_{H \in \mathbb{S}^{m \times m}, \lambda \in \mathbb{R}} \left(\log \det A - H \bullet A + H \bullet XUX^T - \lambda e^T u + \lambda \right).$$

Using the fact that $XUX^T = \sum u_i x_i x_i^T$, the dual is given by

$$\min_{H \in \mathbb{S}^{m \times m}, \lambda \in \mathbb{R}} \max_{A \in \mathbb{S}^{m \times m}, u \ge 0} \left([\log \det A - H \bullet A] + \sum_{i=1}^{p} u_i [x_i^T H x_i - \lambda] + \lambda \right)$$

Since the concave function $\log \det A - H \bullet A$ for positive semi-definite A is maximized by choosing $A = H^{-1}$ if H is positive definite. (If H is not positive definite, e.g., $v^T H v \leq 0$ for some $v \neq 0$, then choosing $A = I + \lambda v v^T$, with $\lambda \to \infty$, gives an infinite maximum.) Thus, we have

$$\min_{\substack{x_i^T H x_i \leq \lambda, \ H \in \mathbb{S}_{++}^{m \times m}, \ \lambda \geq 0}} \left(\left[\log \det H^{-1} - H \bullet H^{-1} \right] + \lambda \right),$$

or if we simplify,

min
$$-\log \det H + \lambda - m$$

st. $x_i^T H x_i \le \lambda \quad \forall i = 1, \dots, p$
 $\lambda \ge 0$
 $H \in \mathbb{S}_{++}^{m \times m}$.

We can set $M = \frac{m}{\lambda}H$ to get

min
$$-\log \det M - m \log \lambda + m \log m + \lambda - m$$

st. $x_i^T M x_i \leq m \quad \forall i = 1, \dots, p$
 $\lambda > 0, \quad H \in \mathbb{S}_{++}^{m \times m}.$

This separates the variables λ and M, and minimization over λ gives $\lambda = m$. This gives the final formulation of the dual problem

min
$$-\log \det M$$
 (P)
 $x_i^T M x_i \leq m \quad \forall i = 1, \dots, p$
 $M \in \mathbb{S}_{++}^{m \times m}.$

The dual problem is analogous to finding the minimum volume central ellipsoid containing the points $\{x_i\}$.

D-optimality vs. G-optimality

We chose to minimize the determinant of the covariance matrix for $\hat{\beta}$, and this led to *D*optimality. Also, if we made another test at the design point x_i , the variance of our estimate would be $x_i^T (XUX^T)^{-1}x_i$. So we might want to minimize $\max_i x_i^T (XUX^T)^{-1}x_i$ over $\{u \in \mathbb{R}^p : e^T u = 1, u \geq 0\}$. This criterion leads to *G*-optimality.

Proposition 1 This is minimized by the same u that solves (D).

Proof:

(a) For any feasible u,

$$\max_{i} x_{i}^{T} (XUX^{T})^{-1} x_{i} \geq \sum u_{i} x_{i}^{T} (XUX^{T})^{-1} x_{i}$$
$$= \sum \operatorname{trace} \left((XUX^{T})^{-1} u_{i} x_{i} x_{i}^{T} \right)$$
$$= \operatorname{trace} \left((XUX^{T})^{-1} (XUX^{T}) \right)$$
$$= m.$$

(b) (Sketch) We can *achieve* this bound of m by choosing the optimal u from (D) so that $M = (XUX^T)^{-1}$ gives the maximum that equals m by duality. \Box

Algorithms

We choose to solve (D), which also gives us an optimal solution to (P). Since $\log \det XUX^T$ is infinitely differentiable with nice expressions for its derivatives, we are tempted to use secondorder methods for its solution. But every iteration is very expensive. Consider instead coordinate ascent! Either increase $u^{(i)}$ or decrease $u^{(j)}$ at each iteration, then rescale. If we increase $u^{(i)}$ by λ , XUX^T increases by $\lambda x_i x_i^T$, a rank-one perturbation! So we can easily update $g(u) = \log \det XUX^T$ and $\nabla g(u) = (x_i^T (XUX^T)^{-1}x_i)_{i=1}^p$. Coordinate ascent with the correct choice of i or j is steepest ascent with respect to the L_1 -norm.

This algorithm, with only increases in components, is due to Federov-Wynn (statistics) and Frank-Wolfe (optimization). The algorithm with increases *and* decreases is due to Atwood (statistics) and Wolfe (optimization). Khachiyan also contributed with a complexity analysis of the algorithm with just increases (remember the smallest ellipsoid problem in (P)). Ahipasaoglu-Sun-Todd proved linear convergence of the algorithm with both increases and decreases.

Final Remarks on the Course

Linear Complementarity Problem

- Pivoting algorithm "like" simplex method, but with no guiding objective function.
- Purely combinatorial proof of finite convergence; for suitable problems, we get either complementary solution or certificate of infeasibility.

Complexity of Pivoting Algorithms

- Neighborly polytopes, bound on diameters of polyhedra.
- Polynomial expected behavior of certain pivoting algorithms.
- Smoothed complexity.

Informational Complexity of Non-Linear Optimization Problems

Impossible to efficiently approximate the minimum of *non-convex* functions, or approximate the *minimizer* of convex functions. But we can approximate the *minimum* of convex functions.

- Low-dimension, High Accuracy: Method of Centers of Gravity, Ellipsoid Algorithm, Method of Inscribed Ellipsoids.
- High-dimension, Low Accuracy: (Sub)-gradient methods.

Interpretable Duals

- Regression;
- Data Classification;
- Optimal Experimental Design.

The End. \Box