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Optimal Experimental Design Problem

max log detXUXT

st. eTu = 1

u ≥ 0,

where X = (x1, . . . , xp) and U = Diag(u). We aim to take the Lagrangian Dual, but first we
reformulate this as

max log detA (D)

st. A−XUXT = 0

eTu = 1

u ≥ 0

A ∈ Sm×m,

where Sm×m represents the space of symmetric m ×m matrices. Similarly, Sm×m+ denotes the
positive semi-definite cone, and Sm×m++ defines positive definite m×m matrices.

Trace Inner Product

Suppose A,B ∈ IRm×n. We can define an inner product as

⟨A,B⟩ = A ∙B = trace (ATB) =
∑
i,j

aijbij.

Because trace (UV ) = trace (V U), the commutative property holds. Consider, for A ∈ IRm×m

with detA > 0,

�(A) = log detA,

�(�) := �(A+ �eie
T
j )

= log det(A+ �eie
T
j )

= log
[
det(A)

(
1 + �eTj A

−1ei
)]

= log detA+ log
(
1 + �eTj A

−1ei
)
.
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This tells us the directional derivative of � is given by

�′(A; eie
T
j ) = eTj A

−1ei

= trace (eTj A
−1ei)

= trace (A−1eie
T
j )

= A−T ∙ eieTj ,

and since {eieTj } is a basis for IRm×m and � is smooth, we have

�′(A;D) = A−T ∙D.

Thus, ∇�(A) = A−T , and for A symmetric, ∇�(A) = A−1.

Aside: If we write  (A) := �(A;D) = A−1 ∙ D, where A,D are symmetric, we find
 ′(A;E) = −trace (A−1DA−1E). This is analogous to the second derivative, and can be used
to show − log det is convex in the positive semi-definite cone.

Lagrangian Dual

Now consider (D). This is equivalent to

max
A∈Sm×m, u≥0

min
H∈Sm×m, �∈IR

(
log detA−H ∙ A+H ∙XUXT − �eTu+ �

)
.

Using the fact that XUXT =
∑
uixix

T
i , the dual is given by

min
H∈Sm×m, �∈IR

max
A∈Sm×m, u≥0

(
[log detA−H ∙ A] +

p∑
i=1

ui[x
T
i Hxi − �] + �

)
.

Since the concave function log detA − H ∙ A for positive semi-definite A is maximized by
choosing A = H−1 if H is positive definite. (If H is not positive definite, e.g., vTHv ≤ 0 for
some v ∕= 0, then choosing A = I + �vvT , with �→∞, gives an infinite maximum.) Thus, we
have

min
xTi Hxi≤�, H∈S

m×m
++ , �≥0

(
[log detH−1 −H ∙H−1] + �

)
,

or if we simplify,

min − log detH + �−m
st. xTi Hxi ≤ � ∀i = 1, . . . , p

� ≥ 0

H ∈ Sm×m++ .
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We can set M = m
�
H to get

min − log detM −m log �+m logm+ �−m
st. xTi Mxi ≤ m ∀i = 1, . . . , p

� > 0, H ∈ Sm×m++ .

This separates the variables � and M , and minimization over � gives � = m. This gives the
final formulation of the dual problem

min − log detM (P)

xTi Mxi ≤ m ∀i = 1, . . . , p

M ∈ Sm×m++ .

The dual problem is analogous to finding the minimum volume central ellipsoid containing the
points {xi}.

D-optimality vs. G-optimality

We chose to minimize the determinant of the covariance matrix for �̂, and this led to D-
optimality. Also, if we made another test at the design point xi, the variance of our estimate
would be xTi (XUXT )−1xi. So we might want to minimize maxi x

T
i (XUXT )−1xi over {u ∈ IRp :

eTu = 1, u ≥ 0}. This criterion leads to G-optimality.

Proposition 1 This is minimized by the same u that solves (D).

Proof:

(a) For any feasible u,

max
i
xTi (XUXT )−1xi ≥

∑
uix

T
i (XUXT )−1xi

=
∑

trace
(
(XUXT )−1uixix

T
i

)
= trace

(
(XUXT )−1(XUXT )

)
= m.

(b) (Sketch) We can achieve this bound of m by choosing the optimal u from (D) so that
M = (XUXT )−1 gives the maximum that equals m by duality. ⊓⊔

Algorithms

We choose to solve (D), which also gives us an optimal solution to (P). Since log detXUXT is
infinitely differentiable with nice expressions for its derivatives, we are tempted to use second-
order methods for its solution. But every iteration is very expensive.

3



Consider instead coordinate ascent! Either increase u(i) or decrease u(j) at each iteration,
then rescale. If we increase u(i) by �, XUXT increases by �xix

T
i , a rank-one perturbation! So

we can easily update g(u) = log detXUXT and ∇g(u) = (xTi (XUXT )−1xi)
p
i=1. Coordinate

ascent with the correct choice of i or j is steepest ascent with respect to the L1-norm.
This algorithm, with only increases in components, is due to Federov-Wynn (statistics)

and Frank-Wolfe (optimization). The algorithm with increases and decreases is due to Atwood
(statistics) and Wolfe (optimization). Khachiyan also contributed with a complexity analysis of
the algorithm with just increases (remember the smallest ellipsoid problem in (P)). Ahipasaoglu-
Sun-Todd proved linear convergence of the algorithm with both increases and decreases.

Final Remarks on the Course

Linear Complementarity Problem

∙ Pivoting algorithm “like” simplex method, but with no guiding objective function.

∙ Purely combinatorial proof of finite convergence; for suitable problems, we get either
complementary solution or certificate of infeasibility.

Complexity of Pivoting Algorithms

∙ Neighborly polytopes, bound on diameters of polyhedra.

∙ Polynomial expected behavior of certain pivoting algorithms.

∙ Smoothed complexity.

Informational Complexity of Non-Linear Optimization Problems

Impossible to efficiently approximate the minimum of non-convex functions, or approximate
the minimizer of convex functions. But we can approximate the minimum of convex functions.

∙ Low-dimension, High Accuracy: Method of Centers of Gravity, Ellipsoid Algorithm,
Method of Inscribed Ellipsoids.

∙ High-dimension, Low Accuracy: (Sub)-gradient methods.

Interpretable Duals

∙ Regression;

∙ Data Classification;

∙ Optimal Experimental Design.

The End. ⊓⊔
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