Optimal Experimental Design Problem

$$
\begin{aligned}
\max & \log \operatorname{det} X U X^{T} \\
\text { st. } & e^{T} u=1 \\
& u \geq 0,
\end{aligned}
$$

where $X=\left(x_{1}, \ldots, x_{p}\right)$ and $U=\operatorname{Diag}(u)$. We aim to take the Lagrangian Dual, but first we reformulate this as

$$
\begin{align*}
\max & \log \operatorname{det} A \tag{D}\\
\text { st. } & A-X U X^{T}=0 \\
& e^{T} u=1 \\
& u \geq 0 \\
& A \in \mathbb{S}^{m \times m}
\end{align*}
$$

where $\mathbb{S}^{m \times m}$ represents the space of symmetric $m \times m$ matrices. Similarly, $\mathbb{S}_{+}^{m \times m}$ denotes the positive semi-definite cone, and $\mathbb{S}_{++}^{m \times m}$ defines positive definite $m \times m$ matrices.

Trace Inner Product

Suppose $A, B \in \mathbf{R}^{m \times n}$. We can define an inner product as

$$
\langle A, B\rangle=A \bullet B=\operatorname{trace}\left(A^{T} B\right)=\sum_{i, j} a_{i j} b_{i j} .
$$

Because trace $(U V)=$ trace $(V U)$, the commutative property holds. Consider, for $A \in \mathbf{R}^{m \times m}$ with $\operatorname{det} A>0$,

$$
\begin{aligned}
\phi(A) & =\log \operatorname{det} A \\
\theta(\lambda) & :=\phi\left(A+\lambda e_{i} e_{j}^{T}\right) \\
& =\log \operatorname{det}\left(A+\lambda e_{i} e_{j}^{T}\right) \\
& =\log \left[\operatorname{det}(A)\left(1+\lambda e_{j}^{T} A^{-1} e_{i}\right)\right] \\
& =\log \operatorname{det} A+\log \left(1+\lambda e_{j}^{T} A^{-1} e_{i}\right) .
\end{aligned}
$$

This tells us the directional derivative of ϕ is given by

$$
\begin{aligned}
\phi^{\prime}\left(A ; e_{i} e_{j}^{T}\right) & =e_{j}^{T} A^{-1} e_{i} \\
& =\operatorname{trace}\left(e_{j}^{T} A^{-1} e_{i}\right) \\
& =\operatorname{trace}\left(A^{-1} e_{i} e_{j}^{T}\right) \\
& =A^{-T} \bullet e_{i} e_{j}^{T},
\end{aligned}
$$

and since $\left\{e_{i} e_{j}^{T}\right\}$ is a basis for $\mathbb{R}^{m \times m}$ and ϕ is smooth, we have

$$
\phi^{\prime}(A ; D)=A^{-T} \bullet D
$$

Thus, $\nabla \phi(A)=A^{-T}$, and for A symmetric, $\nabla \phi(A)=A^{-1}$.

Aside: If we write $\psi(A):=\phi(A ; D)=A^{-1} \bullet D$, where A, D are symmetric, we find $\psi^{\prime}(A ; E)=-\operatorname{trace}\left(A^{-1} D A^{-1} E\right)$. This is analogous to the second derivative, and can be used to show $-\log$ det is convex in the positive semi-definite cone.

Lagrangian Dual

Now consider (D). This is equivalent to

$$
\max _{A \in \mathbb{S}^{m \times m}, u \geq 0} \min _{H \in \mathbb{S}^{m \times m}, \lambda \in \mathrm{R}}\left(\log \operatorname{det} A-H \bullet A+H \bullet X U X^{T}-\lambda e^{T} u+\lambda\right) .
$$

Using the fact that $X U X^{T}=\sum u_{i} x_{i} x_{i}^{T}$, the dual is given by

$$
\min _{H \in \mathbb{S}^{m \times m}, \lambda \in \mathrm{R}} \max _{A \in \mathbb{S}^{m \times m}, u \geq 0}\left([\log \operatorname{det} A-H \bullet A]+\sum_{i=1}^{p} u_{i}\left[x_{i}^{T} H x_{i}-\lambda\right]+\lambda\right) .
$$

Since the concave function $\log \operatorname{det} A-H \bullet A$ for positive semi-definite A is maximized by choosing $A=H^{-1}$ if H is positive definite. (If H is not positive definite, e.g., $v^{T} H v \leq 0$ for some $v \neq 0$, then choosing $A=I+\lambda v v^{T}$, with $\lambda \rightarrow \infty$, gives an infinite maximum.) Thus, we have

$$
\min _{x_{i}^{T} H x_{i} \leq \lambda, H \in \mathbb{S}_{++}^{m \times m}, \lambda \geq 0}\left(\left[\log \operatorname{det} H^{-1}-H \bullet H^{-1}\right]+\lambda\right),
$$

or if we simplify,

$$
\begin{aligned}
\min & -\log \operatorname{det} H+\lambda-m \\
\text { st. } & x_{i}^{T} H x_{i} \leq \lambda \quad \forall i=1, \ldots, p \\
& \lambda \geq 0 \\
& H \in \mathbb{S}_{++}^{m \times m}
\end{aligned}
$$

We can set $M=\frac{m}{\lambda} H$ to get

$$
\begin{aligned}
\min & -\log \operatorname{det} M-m \log \lambda+m \log m+\lambda-m \\
\text { st. } & x_{i}^{T} M x_{i} \leq m \quad \forall i=1, \ldots, p \\
& \lambda>0, \quad H \in \mathbb{S}_{++}^{m \times m}
\end{aligned}
$$

This separates the variables λ and M, and minimization over λ gives $\lambda=m$. This gives the final formulation of the dual problem

$$
\begin{array}{ll}
\min & -\log \operatorname{det} M \tag{P}\\
& x_{i}^{T} M x_{i} \leq m \quad \forall i=1, \ldots, p \\
& M \in \mathbb{S}_{++}^{m \times m} .
\end{array}
$$

The dual problem is analogous to finding the minimum volume central ellipsoid containing the points $\left\{x_{i}\right\}$.

D-optimality vs. G-optimality

We chose to minimize the determinant of the covariance matrix for $\hat{\beta}$, and this led to D optimality. Also, if we made another test at the design point x_{i}, the variance of our estimate would be $x_{i}^{T}\left(X U X^{T}\right)^{-1} x_{i}$. So we might want to minimize $\max _{i} x_{i}^{T}\left(X U X^{T}\right)^{-1} x_{i}$ over $\left\{u \in \mathbf{R}^{p}\right.$: $\left.e^{T} u=1, u \geq 0\right\}$. This criterion leads to G-optimality.

Proposition 1 This is minimized by the same u that solves (D).

Proof:

(a) For any feasible u,

$$
\begin{aligned}
\max _{i} x_{i}^{T}\left(X U X^{T}\right)^{-1} x_{i} & \geq \sum u_{i} x_{i}^{T}\left(X U X^{T}\right)^{-1} x_{i} \\
& =\sum \operatorname{trace}\left(\left(X U X^{T}\right)^{-1} u_{i} x_{i} x_{i}^{T}\right) \\
& =\operatorname{trace}\left(\left(X U X^{T}\right)^{-1}\left(X U X^{T}\right)\right) \\
& =m .
\end{aligned}
$$

(b) (Sketch) We can achieve this bound of m by choosing the optimal u from (D) so that $M=\left(X U X^{T}\right)^{-1}$ gives the maximum that equals m by duality.

Algorithms

We choose to solve (D), which also gives us an optimal solution to (P). Since $\log \operatorname{det} X U X^{T}$ is infinitely differentiable with nice expressions for its derivatives, we are tempted to use secondorder methods for its solution. But every iteration is very expensive.

Consider instead coordinate ascent! Either increase $u^{(i)}$ or decrease $u^{(j)}$ at each iteration, then rescale. If we increase $u^{(i)}$ by $\lambda, X U X^{T}$ increases by $\lambda x_{i} x_{i}^{T}$, a rank-one perturbation! So we can easily update $g(u)=\log \operatorname{det} X U X^{T}$ and $\nabla g(u)=\left(x_{i}^{T}\left(X U X^{T}\right)^{-1} x_{i}\right)_{i=1}^{p}$. Coordinate ascent with the correct choice of i or j is steepest ascent with respect to the L_{1}-norm.

This algorithm, with only increases in components, is due to Federov-Wynn (statistics) and Frank-Wolfe (optimization). The algorithm with increases and decreases is due to Atwood (statistics) and Wolfe (optimization). Khachiyan also contributed with a complexity analysis of the algorithm with just increases (remember the smallest ellipsoid problem in (P)). Ahipasaoglu-Sun-Todd proved linear convergence of the algorithm with both increases and decreases.

Final Remarks on the Course

Linear Complementarity Problem

- Pivoting algorithm "like" simplex method, but with no guiding objective function.
- Purely combinatorial proof of finite convergence; for suitable problems, we get either complementary solution or certificate of infeasibility.

Complexity of Pivoting Algorithms

- Neighborly polytopes, bound on diameters of polyhedra.
- Polynomial expected behavior of certain pivoting algorithms.
- Smoothed complexity.

Informational Complexity of Non-Linear Optimization Problems

Impossible to efficiently approximate the minimum of non-convex functions, or approximate the minimizer of convex functions. But we can approximate the minimum of convex functions.

- Low-dimension, High Accuracy: Method of Centers of Gravity, Ellipsoid Algorithm, Method of Inscribed Ellipsoids.
- High-dimension, Low Accuracy: (Sub)-gradient methods.

Interpretable Duals

- Regression;
- Data Classification;
- Optimal Experimental Design.

The End.

