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More on Data Classification
Last lecture, we focused on a data classification problem based on the L∞-norm of 1/ri:

(P∞) min Ce>ξ + max
1

ri

Y X>w + βy + ξ − r = 0

‖w‖2 ≤ 1, ξ ≥ 0, r ≥ 0

(D∞) max − ‖XY α‖2 + 2
√

e>α

y>α = 0

0 ≤ α ≤ Ce.

Instead, today we’ll use an L1-norm on 1/ri. That is,

min Ce>ξ +
n∑

i=1

1

ri

Y X>w + βy + ξ − r = 0

‖w‖2 ≤ 1, ξ ≥ 0, r ≥ 0.

As before, we use ρ, σ, but now in IRn, and set ri = ρi − σi, 1/ri = ρi + σi and impose

ρi ≥
∥∥∥∥(

σi

1

)∥∥∥∥ for each i.

This gives the conic problem (P)

min
ω,w,β,ξ,ρ,σ,τ

Ce>ξ + e>ρ + e>σ

Y X>w + βy + ξ − ρ + σ = 0

ω = 1

τ = e(
ω
w

)
∈ K1+d

2 , β ∈ IR, ξ ≥ 0,

ρi

σi

τi

 ∈ K1+2
2 , i = 1, . . . , n.

Taking the conic dual and simplifying, we get (D)

max− ‖XY α‖2 + 2e>
√

α

y>α = 0

0 ≤ α ≤ Ce,
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where
√

α = (
√

αi). Note that the optimal α will have all strictly positive entries.
Now, assume as in the last lecture that the data is separable, that C is sufficiently large so

that ξ = 0 in (P), and that α ≤ Ce is non-binding in (D). We write α+ = γα+, α− = γα−
with e>+α+ = e>−α− = 1, to get

max
α+,α−,γ

− γ ‖X+α+ −X−α−‖2 + 2
√

γ(e>+
√

α+ + e>−
√

α−),

and maximizing γ first, we get

γ =
(e>+
√

α+ + e>−
√

α−)2

‖X+α+ −X−α−‖2
2

,

and the dual becomes

max
α+,α−

(e>+
√

α+ + e>−
√

α−)2

‖X+α+ −X−α−‖2

≡ min
α+,α−

‖X+α+ −X−α−‖2

(e>+
√

α+ + e>−
√

α−)2

(contrast this with minα+,α−
‖X+α+−X−α−‖2

2
last time). So now we minimize the distance between

convex combinations of positive and negative points, weighted by the square of the sum of the
square roots of the weights.

Again, as long as XY α 6= 0 (which holds for separable data), the primal variable w will be
XY α/‖XY α‖2.

Optimal Experimental Design (Kiefer & Wolfowitz at Cornell, and others)
Consider the linear regression model

Y = x(t)>β + ε,

where Y is the dependent variable, t ∈ T is/are the independent variables, x is a known function
from T to IRm, and ε is an error vector normally distributed ε ∼ N (0, σ2). Here, the choice of
a linear dependence on x(t) is not as restrictive as it seems since nonlinear dependencies can
be modeled, e.g., by defining x(t) = (1, t, t2, t3)>.

Now, suppose we observe Y at values t1, . . . , tn and get

y = (y1, . . . , yn)> ≈ X>β + (ε1, . . . , εn)> =: X>β +−→ε ,

where X = [x1, . . . , xn] = [x(t1), . . . , x(tn)]. A natural estimate for β is the least-squares
estimator: β̂ = (XX>)−1Xy, where y is a sample from X>β + −→ε , and so β̂ is a sample of
(XX>)−1X(X>β +−→ε ) or β + (XX>)−1X−→ε . Here, we assume X has rank m.

Thus, E(β̂) = β which means the estimate is unbiased, and its variance is the matrix
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E((β̂ − β)(β̂ − β)T ) = E((XX>)−1X−→ε −→ε >X>(XX>)−1)

= (XX>)−1XE(−→ε −→ε >)X>(XX>)−1

= σ2(XX>)−1.

Now, suppose we can choose the columns xi of X. Assume these can be chosen from
X = {x1, . . . , xp}. Suppose we choose xi ni times (ni ≥ 0, N :=

∑
i ni); then, X as above is

[. . . xi . . . xi︸ ︷︷ ︸
ni times

. . .].

Let wi := ni/N , so wi ≥ 0 and e>w = 1. Then we find β̂ = (XWX>)−1XWȳ, where W :=
diag(w), we have redefined X as [x1, . . . , xp], and ȳi is the mean of the ni yi’s corresponding to

xi. Then cov(β̂) = σ2

N
(XWX>)−1. Note we can then choose W to make the covariance smaller

while keeping N fixed.
That is, we will choose W to make the determinant of (XWX>)−1 small, or equivalently

det(XWX>) large. This gives

max
w

det(XWX>)

e>w = 1,

Nw integer,

which is a nonlinear integer optimization problem.
We now relax the integer constraints to get the D-optimal design problem:

max
u∈IRp

det(XUX>)

e>u = 1,

u ≥ 0.

If we instead maximize ln det(XUX>), we have a concave objective function. We’ll look at its
Lagrangian dual and discuss briefly algorithms next time.
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