The story of the Pessimist vs. Optimist (Robust optimization)

We'll consider linear programming problems where some or all of the data are uncertain. We want a feasible solution with good objective value for any data in a specified set. Consider

$$
\begin{array}{ll}
\max & b^{T} y \\
& A^{T} y \leq c .
\end{array}
$$

This is equivalent to

$$
\begin{aligned}
&\left.\max \begin{array}{ll}
\eta & \\
& \\
\eta-b^{T} y & \leq 0 \\
& A^{T} y-c \xi
\end{array}\right) \leq 0 \\
& \\
& \leq 1 \\
&-\xi \leq-1,
\end{aligned}
$$

where all of the data is in the constraint matrix. So we have

$$
\begin{array}{ll}
\max & b^{T} y \\
& A^{T} y \leq c
\end{array}
$$

with only uncertainty in A. We'll assume each column a_{j} of A lies in an uncertainty set E_{j}. Conservative thinking leads to the problem

$$
\begin{array}{ll}
\max & b^{T} y \\
& a_{j}^{T} y \leq c, \quad \forall a_{j} \in E_{j}, j=1, \cdots, n .
\end{array}
$$

This is a so-called semi-infinite LP problem and can model nonlinear problems: an infinite number of linear constraints can model a quadratic constraint, for instance (see the example below).

We'll model the E_{j} 's as ellipsoids, possibly degenerate (e.g., each a_{j} may be sparse and zero coefficients are probably "certain"). Let $E_{j}=\left\{\bar{a}_{j}+D_{j} w_{j}:\left\|w_{j}\right\|_{2} \leq 1\right\}$ for some $\bar{a}_{j} \in \mathbb{R}^{m}$, $D_{j} \in \mathbb{R}^{m \times p_{j}}$. Fix j; then we want:

$$
\max \left\{a_{j}^{T} y: a_{j} \in E_{j}\right\} \leq c_{j},
$$

a single constraint. But

$$
\begin{aligned}
& \max \left\{a_{j}^{T} y: a_{j} \in E_{j}\right\} \\
& =\max \left\{\bar{a}_{j}^{T} y+\left(D_{j}^{T} y\right)^{T} w_{j}:\left\|w_{j}\right\|_{2} \leq 1\right\} \\
& =\bar{a}_{j}^{T} y+\left\|D_{j}^{T} y\right\|_{2} .
\end{aligned}
$$

So we get the deterministic equivalent of our robust LP program:

$$
\begin{array}{ll}
\max & b^{T} y \\
& \bar{a}_{j}^{T} y+\left\|D_{j}^{T} y\right\|_{2} \leq c_{j}, \quad j=1, \cdots, n .
\end{array}
$$

Write this as the conic programming problem:

$$
\begin{array}{lll}
\max & b^{T} y & \\
& \bar{a}_{j}^{T} y+\xi_{j} \quad=c_{j}, & j=1, \cdots, n \\
& D_{j}^{T} y+z_{j}=0, & j=1, \cdots, n \\
& y \in \mathbf{R}^{m},\binom{\xi_{j}}{z_{j}} \in K_{2}^{1+p_{j}}, & j=1, \cdots, n .
\end{array}
$$

This is a second-order cone problem. If all the p_{j} 's are small, this is almost as easy to solve as a comparable LP problem. The dual of this conic problem is

$$
\begin{aligned}
\min & c^{T} x \\
& \sum_{j=1}^{n}\left(\bar{a}_{j} x_{j}+D_{j} v_{j}\right)=b \\
& \binom{x_{j}}{v_{j}} \in\left(K_{2}^{1+p_{j}}\right)^{*}=K_{2}^{1+p_{j}}, \quad j=1, \cdots, n .
\end{aligned}
$$

Write $v_{j}=x_{j} w_{j}, w_{j} \in \mathbb{R}^{p_{j}}$, so $\left\|w_{j}\right\|_{2} \leq 1$. Then we get

$$
\begin{aligned}
\min _{x, w_{1}, \cdots, w_{n}} & c^{T} x \\
& \sum_{j=1}^{n}\left(\bar{a}_{j}+D_{j} w_{j}\right) x_{j}=b \\
& x \geq 0,\left\|w_{j}\right\| \leq 1, \forall j .
\end{aligned}
$$

This is equivalent to

$$
\begin{array}{ll}
\min & c^{T} x \\
& \sum_{j=1}^{n} a_{j} x_{j}=b \\
& x \geq 0,
\end{array}
$$

for some $a_{j} \in E_{j}, j=1,2, \cdots, n$. This is the optimist's problem: x is feasible as long as it is feasible for some data in the uncertainty set. A nice example of designing an antenna via robust LP

"Dream and reality": the nominal (left, solid) and an actual (right, solid) diagrams
is in [1] Page 101.
[dashed: the target diagram]
Remarks on semi-infinite programming:

$$
\begin{array}{ll}
\max & b^{T} y \\
& a(t)^{T} y \leq c(t), t \in T \tag{P}
\end{array}
$$

where T is compact.
Example $1 T=[0,2 \pi], a(t)=(\cos (t) ; \sin (t)), c(t)=1$; then the feasible region is the unit ball in \mathbf{R}^{2}.

Dual:

$$
\begin{aligned}
\min & " \sum_{t \in T} c(t) x(t) "=\int c(t) x(t) d t \\
& " \sum_{t} a(t) x(t) "=\int a(t) x(t) d t=b \\
& x(t) \geq 0, t \in T
\end{aligned}
$$

Think of the dual simplex algorithm for (P), which chooses just m of the $a(t)$'s with b a nonnegative combination. So x would be a discrete measure concentrating on just m points. Then somehow find a violated constraint t for the corresponding y. As the iterations proceed, $a\left(t_{1}\right), \cdots, a\left(t_{m}\right)$ may become degenerate, e.g., for $m=2,\left[a\left(t_{1}\right), a\left(t_{2}\right)\right]$ becomes ill-conditioned as $\left|t_{1}-t_{2}\right| \rightarrow 0$. Instead, we could consider a basis of $\left[a\left(t_{1}\right), \frac{a\left(t_{2}\right)-a\left(t_{1}\right)}{t_{2}-t_{1}}\right]$ or in the limit $\left[a\left(t_{1}\right), a^{\prime}\left(t_{1}\right)\right]$. See [2] for details.

References

[1] A. Ben-Tal, A.S. Nemirovski, Lectures on Modern Convex Optimization
[2] E.J. Anderson, A.S. Lewis, An Extension of the Simplex Algorithm for Semi-infinite Linear Programming, 1988

