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The story of the Pessimist vs. Optimist (Robust optimization)
We’ll consider linear programming problems where some or all of the data are uncertain.

We want a feasible solution with good objective value for any data in a specified set. Consider

max bT y

AT y ≤ c.

This is equivalent to

max η

η − bT y ≤ 0

AT y − cξ ≤ 0

ξ ≤ 1

− ξ ≤ −1,

where all of the data is in the constraint matrix. So we have

max bT y

AT y ≤ c,

with only uncertainty in A. We’ll assume each column aj of A lies in an uncertainty set Ej.
Conservative thinking leads to the problem

max bT y

aT
j y ≤ c, ∀aj ∈ Ej, j = 1, · · · , n.

This is a so-called semi-infinite LP problem and can model nonlinear problems: an infinite
number of linear constraints can model a quadratic constraint, for instance (see the example
below).

We’ll model the Ej’s as ellipsoids, possibly degenerate (e.g., each aj may be sparse and zero
coefficients are probably “certain”). Let Ej = {āj + Djwj : ‖wj‖2 ≤ 1} for some āj ∈ IRm,
Dj ∈ IRm×pj . Fix j; then we want:

max{aT
j y : aj ∈ Ej} ≤ cj,

a single constraint. But

max{aT
j y : aj ∈ Ej}

= max{āT
j y + (DT

j y)T wj : ‖wj‖2 ≤ 1}
= āT

j y + ‖DT
j y‖2.
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So we get the deterministic equivalent of our robust LP program:

max bT y

āT
j y + ‖DT

j y‖2 ≤ cj, j = 1, · · · , n.

Write this as the conic programming problem:

max bT y

āT
j y + ξj = cj, j = 1, · · · , n

DT
j y + zj = 0, j = 1, · · · , n

y ∈ IRm,

(
ξj

zj

)
∈ K

1+pj

2 , j = 1, · · · , n.

This is a second-order cone problem. If all the pj’s are small, this is almost as easy to solve as
a comparable LP problem. The dual of this conic problem is

min cT x
n∑

j=1

(ājxj + Djvj) = b(
xj

vj

)
∈ (K

1+pj

2 )∗ = K
1+pj

2 , j = 1, · · · , n.

Write vj = xjwj, wj ∈ IRpj , so ‖wj‖2 ≤ 1. Then we get

min
x,w1,··· ,wn

cT x

n∑
j=1

(āj + Djwj)xj = b

x ≥ 0, ‖wj‖ ≤ 1,∀j.

This is equivalent to

min cT x
n∑

j=1

ajxj = b

x ≥ 0,

for some aj ∈ Ej, j = 1, 2, · · · , n. This is the optimist’s problem: x is feasible as long as it is fea-
sible for some data in the uncertainty set. A nice example of designing an antenna via robust LP
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is in [1] Page 101.
Remarks on semi-infinite programming:

max bT y

(P ) a(t)T y ≤ c(t), t ∈ T,

where T is compact.

Example 1 T = [0, 2π], a(t) = (cos(t); sin(t)), c(t) = 1; then the feasible region is the unit
ball in IR2.

Dual:

min “
∑
t∈T

c(t)x(t)” =

∫
c(t)x(t)dt

(D) “
∑

t

a(t)x(t)” =

∫
a(t)x(t)dt = b

x(t) ≥ 0, t ∈ T.

Think of the dual simplex algorithm for (P ), which chooses just m of the a(t)’s with b a
nonnegative combination. So x would be a discrete measure concentrating on just m points.
Then somehow find a violated constraint t for the corresponding y. As the iterations proceed,
a(t1), · · · , a(tm) may become degenerate, e.g., for m = 2, [a(t1), a(t2)] becomes ill-conditioned as

|t1− t2| → 0. Instead, we could consider a basis of [a(t1),
a(t2)−a(t1)

t2−t1
] or in the limit [a(t1), a

′
(t1)].

See [2] for details.
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