Mathematical Programming II	Lecture 23
ORIE 6310 Spring 2014	April 23, 2014
Scribe: Jian Wu	

Last topic: "Interpretable duals."
Regression: want to fit a vector $b \in \mathcal{R}^{m}$ using as explanatory variables the columns of a matrix $A \in \mathcal{R}^{m * n}$. Want $x \in \mathcal{R}^{n}$ with $b-A x$ "small".

Definition 1 The $L_{p}-$ norm of a vector $v \in \mathcal{R}^{l}$ is

$$
\begin{aligned}
\|v\|_{p} & =\left(\sum_{j=1}^{l}\left|v_{j}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty \\
\|v\|_{\infty} & =\max _{1 \leq j \leq l}\left|v_{j}\right|
\end{aligned}
$$

L_{∞}-regression: choose x to minimize $\|A x-b\|_{\infty}$. Formulate this as the LP:

$$
\begin{aligned}
& \min \beta \\
& \beta e+A x \geq b \\
& \beta e-A x \geq-b
\end{aligned}
$$

with dual

$$
\begin{aligned}
\max b^{T} y-b^{T} z & \\
e^{T} y+e^{T} z & =1 \\
A^{T} y-A^{T} z & =0 \\
y, z & \geq 0 .
\end{aligned}
$$

Let $u=y-z$. Then the objective is $\max b^{T} u$ and the " A " constraints are $A^{T} u=0$. The constraints $e^{T} y+e^{T} z=1$ and $y \geq 0, z \geq 0$ imply $\sum\left|u_{i}\right| \leq 1$, i.e. $\|u\|_{1} \leq 1$. Moreover, for any such u, there are suitable y and z. Hence the dual can be written

$$
\begin{aligned}
& \max \quad b^{T} u \\
& A^{T} u=0 \\
&\|u\|_{1} \leq 1
\end{aligned}
$$

L_{1}-regression: choose x to minimize $\|A x-b\|_{1}$:

$$
\min \begin{aligned}
e^{T} v+e^{T} w & \\
A x+v-w & =b \\
v, w & \geq 0,
\end{aligned}
$$

with dual

$$
\begin{aligned}
\max b^{T} u & \\
A^{T} u & =0 \\
u & \leq e \\
-u & \leq e
\end{aligned}
$$

So we get the simplified dual

$$
\begin{aligned}
\max \quad b^{T} u & \\
A^{T} u & =0 \\
\|u\|_{\infty} & \leq 1
\end{aligned}
$$

To treat the general L_{p}-case, we need conic duality: consider

$$
\begin{aligned}
(P) \quad \min \quad c^{T} x & \\
A x & =b \\
x & \in K
\end{aligned}
$$

and
(D) $\max b^{T} y$

$$
\begin{aligned}
A^{T} y+s & =c \\
s & \in K^{*}
\end{aligned}
$$

Here $A \in \mathcal{R}^{m * n}, c \in \mathcal{R}^{n}, b \in \mathcal{R}^{m}$. So $y \in \mathcal{R}^{m}, x, s \in \mathcal{R}^{n}$. K is a closed convex cone in \mathcal{R}^{n}, and $K^{*}=\left\{s \in \mathcal{R}^{n}: s^{T} x \geq 0\right.$ for all $\left.x \in K\right\}$ is its dual cone. E.g., $K=\mathcal{R}_{+}^{n}$ implies $K^{*}=\mathcal{R}_{+}^{n}$. $K=S_{+}^{r * r}$ implies $K^{*}=S_{+}^{r * r}$. where $S_{+}^{r * r}$ is the set of positive semidefinite matrices of order r.

Weak duality: if x is feasible in $(P),(y, s)$ in (D), then $c^{T} x-b^{T} y=\left(A^{T} y+s\right)^{T} x-(A x)^{T} y=$ $s^{T} x \geq 0$.

Definition $2 x$ is a strictly feasible solution for (P) if $A x=b$ and $x \in$ int K. Similarly, (y, s) is a strictly feasible solution for the dual if $A^{T} y+s=c, s \in$ int K^{*}.

Theorem 1 (Strong duality) If either (P) or (D) has a strictly feasible solution, then (P) and (D) have equal optimal values (possible infinite). If $(P)((D)$ resp.) has a strictly feasible solution, and $(D)((P)$ resp.) has a feasible solution, then $(D)((P)$ resp.) has a bounded nonempty set of optimal solutions.

Proposition 1 If K_{1} and K_{2} are closed convex cones in \mathcal{R}^{m} and \mathcal{R}^{n}, then so is $K_{1} \times K_{2}$ in \mathcal{R}^{m+n}, with $\left(K_{1} \times K_{2}\right)^{*}=K_{1}^{*} \times K_{2}^{*}$.

Lemma 1 (Hölder's inequality) If $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, then for any $x, s \in \mathcal{R}^{n},\left|s^{T} x\right| \leq$ $\|s\|_{p}\|x\|_{q}$. Moreover, for any x (s), there is a nonzero $s(x)$ for which equality holds.

Definition 3 Given $1 \leq p \leq \infty$, let $K_{p}^{1+n}=\left\{(\xi, x) \in \mathcal{R}^{1+n}, \xi \geq\|x\|_{p}\right\}$.
Proposition 2 For $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, $\left(K_{p}^{1+n}\right)^{*}=K_{q}^{1+n}$.
Proof: Suppose $(\xi, x) \in K_{p}^{1+n},(\eta, y) \in K_{q}^{1+n}$; then

$$
\begin{aligned}
\xi \eta+x^{T} y & \geq \xi \eta-\left|x^{T} y\right| \\
& \geq \xi \eta-\|x\|_{p}\|y\|_{q} \\
& \geq\|x\|_{p} \eta-\|x\|_{p}\|y\|_{q} \\
& \geq\|x\|_{p}\left(\eta-\|y\|_{q}\right) \geq 0 .
\end{aligned}
$$

Suppose $(\eta, y) \notin K_{q}^{1+n}$, so that $\eta<\|y\|_{q}$. Then by the lemma, there is a nonzero x with $x^{T} y=-\|x\|_{p}\|y\|_{q}$. Choose $\xi=\|x\|_{p}$, so that $(\xi, x) \in K_{p}^{1+n}$. Then $\xi \eta+x^{T} y=\|x\|_{p} \eta-$ $\|x\|_{p}\|y\|_{q}=\|x\|_{p}\left(\eta-\|y\|_{q}\right)<0$. So $(\eta, y) \notin\left(K_{p}^{1+n}\right)^{*}$.

Now we can formulate L_{p}-regression, $\min \|A x-b\|_{p}$, as:
$(P) \quad \min \quad \beta$

$$
\begin{aligned}
A x+v & =b \\
(x ; \beta ; v) & \in \mathcal{R}^{n} \times K_{p}^{1+m}
\end{aligned}
$$

with dual

$$
\begin{aligned}
(D) \quad \max b^{T} u & \\
A^{T} u+s & =0 \\
\omega & =1 \\
u+w & =0 \\
(s ; \omega ; w) & \in\{0\} \times K_{q}^{1+m} .
\end{aligned}
$$

This gives the simplified form of the dual,

$$
\begin{aligned}
\max \quad b^{T} u & \\
A^{T} u & =0 \\
\|u\|_{q} & \leq 1
\end{aligned}
$$

In general, the distance b from the subspace $\{A x\}$ in the L_{p} norm is the maximum component of b in a direction in the null space of A^{T} with L_{q} norm at most 1 .

Slightly more complicated case: LASSO. Instead of choosing carefully a few columns of A, choose all imaginable ones, corresponding, say, to Fourier expansion, wavelets, splines,... . We want to represent b in terms of a few columns of A (avoid overfitting). As a surrogate for minimizing the number of nonzero components of x, we use the sum of the absolute values of the components. Hence we consider min $\|A x-b\|_{2}+\lambda\|x\|_{1}$, or in conic form:

$$
\begin{aligned}
(P) \quad \min +\beta & \\
A x+v & =b \\
(\xi ; x ; \beta ; v) & \in K_{1}^{1+n} \times K_{2}^{1+m},
\end{aligned}
$$

with dual

$$
\text { (D) } \begin{aligned}
\max b^{T} u & \\
\sigma & =\lambda \\
A^{T} u+s & =0 \\
\omega & =1 \\
u+w & =0 \\
(\sigma ; s ; \omega ; w) & \in K_{\infty}^{1+n} \times K_{2}^{1+m}
\end{aligned}
$$

or in simpler terms,

$$
\begin{aligned}
\max \quad b^{T} u & \\
\|u\|_{2} & \leq 1 \\
\left\|A^{T} u\right\|_{\infty} & \leq \lambda
\end{aligned}
$$

