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Last topic: “Interpretable duals.”
Regression: want to fit a vector b ∈ Rm using as explanatory variables the columns of a

matrix A ∈ Rm∗n. Want x ∈ Rn with b− Ax “small”.

Definition 1 The Lp−norm of a vector v ∈ Rl is

||v||p = (
l∑

j=1

|vj|p)
1
p , 1 ≤ p < ∞,

||v||∞ = max
1≤j≤l

|vj|.

L∞-regression: choose x to minimize ||Ax− b||∞. Formulate this as the LP:

min β

βe + Ax ≥ b

βe− Ax ≥ −b,

with dual

max bT y − bT z

eT y + eT z = 1

AT y − AT z = 0

y, z ≥ 0.

Let u = y − z. Then the objective is max bT u and the “A” constraints are AT u = 0. The
constraints eT y + eT z = 1 and y ≥ 0, z ≥ 0 imply

∑
|ui| ≤ 1, i.e. ||u||1 ≤ 1. Moreover, for any

such u, there are suitable y and z. Hence the dual can be written

max bT u

AT u = 0

||u||1 ≤ 1.

L1−regression: choose x to minimize ||Ax− b||1:

min eT v + eT w

Ax + v − w = b

v, w ≥ 0,
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with dual

max bT u

AT u = 0

u ≤ e

−u ≤ e.

So we get the simplified dual

max bT u

AT u = 0

||u||∞ ≤ 1.

To treat the general Lp-case, we need conic duality: consider

(P ) min cT x

Ax = b

x ∈ K,

and

(D) max bT y

AT y + s = c

s ∈ K∗.

Here A ∈ Rm∗n, c ∈ Rn, b ∈ Rm. So y ∈ Rm, x, s ∈ Rn. K is a closed convex cone in Rn,
and K∗ = {s ∈ Rn : sT x ≥ 0 for all x ∈ K} is its dual cone. E.g., K = Rn

+ implies K∗ = Rn
+.

K = Sr∗r
+ implies K∗ = Sr∗r

+ . where Sr∗r
+ is the set of positive semidefinite matrices of order r.

Weak duality: if x is feasible in (P ), (y, s) in (D), then cT x−bT y = (AT y+s)T x−(Ax)T y =
sT x ≥ 0.

Definition 2 x is a strictly feasible solution for (P ) if Ax = b and x ∈ int K. Similarly,
(y, s) is a strictly feasible solution for the dual if AT y + s = c, s ∈ int K∗.

Theorem 1 (Strong duality) If either (P ) or (D) has a strictly feasible solution, then (P ) and
(D) have equal optimal values (possible infinite). If (P ) ((D) resp.) has a strictly feasible
solution, and (D) ((P ) resp.) has a feasible solution, then (D) ((P ) resp.) has a bounded
nonempty set of optimal solutions.

Proposition 1 If K1 and K2 are closed convex cones in Rm and Rn, then so is K1 ×K2 in
Rm+n, with (K1 ×K2)

∗ = K∗
1 ×K∗

2 .

Lemma 1 (Hölder’s inequality) If 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1, then for any x, s ∈ Rn, |sT x| ≤
||s||p||x||q. Moreover, for any x (s), there is a nonzero s (x) for which equality holds.
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Definition 3 Given 1 ≤ p ≤ ∞, let K1+n
p = {(ξ, x) ∈ R1+n, ξ ≥ ||x||p}.

Proposition 2 For 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1, (K1+n
p )∗ = K1+n

q .

Proof: Suppose (ξ, x) ∈ K1+n
p , (η, y) ∈ K1+n

q ; then

ξη + xT y ≥ ξη − |xT y|
≥ ξη − ||x||p||y||q
≥ ||x||pη − ||x||p||y||q
≥ ||x||p(η − ||y||q) ≥ 0.

Suppose (η, y) 6∈ K1+n
q , so that η < ||y||q. Then by the lemma, there is a nonzero x with

xT y = −||x||p||y||q. Choose ξ = ||x||p, so that (ξ, x) ∈ K1+n
p . Then ξη + xT y = ||x||pη −

||x||p||y||q = ||x||p(η − ||y||q) < 0. So (η, y) 6∈ (K1+n
p )∗. ut

Now we can formulate Lp-regression, min ||Ax− b||p, as:

(P ) min β

Ax + v = b

(x; β; v) ∈ Rn ×K1+m
p ,

with dual

(D) max bT u

AT u + s = 0

ω = 1

u + w = 0

(s; ω; w) ∈ {0} ×K1+m
q .

This gives the simplified form of the dual,

max bT u

AT u = 0

||u||q ≤ 1.
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In general, the distance b from the subspace {Ax} in the Lp norm is the maximum component
of b in a direction in the null space of AT with Lq norm at most 1.

Slightly more complicated case: LASSO. Instead of choosing carefully a few columns of A,
choose all imaginable ones, corresponding, say, to Fourier expansion, wavelets, splines,... . We
want to represent b in terms of a few columns of A (avoid overfitting). As a surrogate for
minimizing the number of nonzero components of x, we use the sum of the absolute values of
the components. Hence we consider min ||Ax− b||2 + λ||x||1, or in conic form:

(P ) min λξ + β

Ax + v = b

(ξ; x; β; v) ∈ K1+n
1 ×K1+m

2 ,

with dual

(D) max bT u

σ = λ

AT u + s = 0

ω = 1

u + w = 0

(σ; s; ω; w) ∈ K1+n
∞ ×K1+m

2 ,

or in simpler terms,

max bT u

||u||2 ≤ 1

||AT u||∞ ≤ λ.
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