Last topic: "Interpretable duals."

Regression: want to fit a vector $b \in \mathcal{R}^m$ using as explanatory variables the columns of a matrix $A \in \mathcal{R}^{m*n}$. Want $x \in \mathcal{R}^n$ with b - Ax "small".

Definition 1 The L_p -norm of a vector $v \in \mathcal{R}^l$ is

$$||v||_{p} = \left(\sum_{j=1}^{l} |v_{j}|^{p}\right)^{\frac{1}{p}}, \quad 1 \le p < \infty,$$

$$||v||_{\infty} = \max_{1 \le j \le l} |v_{j}|.$$

 L_{∞} -regression: choose x to minimize $||Ax - b||_{\infty}$. Formulate this as the LP:

$$\begin{array}{ll} \min & \beta \\ \beta e + Ax & \geq & b \\ \beta e - Ax & \geq & -b, \end{array}$$

with dual

$$\max \quad b^{T}y - b^{T}z$$

$$e^{T}y + e^{T}z = 1$$

$$A^{T}y - A^{T}z = 0$$

$$y, z \geq 0.$$

Let u = y - z. Then the objective is $\max b^T u$ and the "A" constraints are $A^T u = 0$. The constraints $e^T y + e^T z = 1$ and $y \ge 0$, $z \ge 0$ imply $\sum |u_i| \le 1$, i.e. $||u||_1 \le 1$. Moreover, for any such u, there are suitable y and z. Hence the dual can be written

$$\max \quad b^T u \\ A^T u = 0 \\ ||u||_1 \leq 1$$

 L_1 -regression: choose x to minimize $||Ax - b||_1$:

$$\begin{array}{rcl} \min & e^T v + e^T w \\ & Ax + v - w &= b \\ & v, w &\geq 0, \end{array}$$

with dual

$$\begin{array}{rcl} \max & b^T u \\ & A^T u & = & 0 \\ & u & \leq & e \\ & -u & \leq & e. \end{array}$$

So we get the simplified dual

$$\max \begin{array}{rcl} b^T u \\ A^T u &=& 0 \\ ||u||_{\infty} &\leq& 1. \end{array}$$

To treat the general L_p -case, we need conic duality: consider

(

$$(P) \quad \min \quad c^T x \\ Ax = b \\ x \in K$$

and

$$D) \max b^T y$$
$$A^T y + s = c$$
$$s \in K^*.$$

Here $A \in \mathcal{R}^{m*n}$, $c \in \mathcal{R}^n$, $b \in \mathcal{R}^m$. So $y \in \mathcal{R}^m$, $x, s \in \mathcal{R}^n$. K is a closed convex cone in \mathcal{R}^n , and $K^* = \{s \in \mathcal{R}^n : s^T x \ge 0 \text{ for all } x \in K\}$ is its dual cone. E.g., $K = \mathcal{R}^n_+$ implies $K^* = \mathcal{R}^n_+$. $K = S^{r*r}_+$ implies $K^* = S^{r*r}_+$ where S^{r*r}_+ is the set of positive semidefinite matrices of order r.

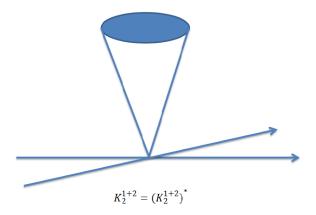
Weak duality: if x is feasible in (P), (y, s) in (D), then $c^T x - b^T y = (A^T y + s)^T x - (Ax)^T y = s^T x \ge 0.$

Definition 2 x is a strictly feasible solution for (P) if Ax = b and $x \in int K$. Similarly, (y, s) is a strictly feasible solution for the dual if $A^Ty + s = c, s \in int K^*$.

Theorem 1 (Strong duality) If either (P) or (D) has a strictly feasible solution, then (P) and (D) have equal optimal values (possible infinite). If (P) ((D) resp.) has a strictly feasible solution, and (D) ((P) resp.) has a feasible solution, then (D) ((P) resp.) has a bounded nonempty set of optimal solutions.

Proposition 1 If K_1 and K_2 are closed convex cones in \mathcal{R}^m and \mathcal{R}^n , then so is $K_1 \times K_2$ in \mathcal{R}^{m+n} , with $(K_1 \times K_2)^* = K_1^* \times K_2^*$.

Lemma 1 (Hölder's inequality) If $1 \le p, q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, then for any $x, s \in \mathbb{R}^n$, $|s^T x| \le ||s||_p ||x||_q$. Moreover, for any x (s), there is a nonzero s (x) for which equality holds.



Definition 3 Given $1 \le p \le \infty$, let $K_p^{1+n} = \{(\xi, x) \in \mathcal{R}^{1+n}, \xi \ge ||x||_p\}.$

Proposition 2 For $1 \le p, q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $(K_p^{1+n})^* = K_q^{1+n}$.

Proof: Suppose $(\xi, x) \in K_p^{1+n}$, $(\eta, y) \in K_q^{1+n}$; then

$$\begin{aligned} \xi \eta + x^T y &\geq \xi \eta - |x^T y| \\ &\geq \xi \eta - ||x||_p ||y||_q \\ &\geq ||x||_p \eta - ||x||_p ||y||_q \\ &\geq ||x||_p (\eta - ||y||_q) \geq 0. \end{aligned}$$

Suppose $(\eta, y) \notin K_q^{1+n}$, so that $\eta < ||y||_q$. Then by the lemma, there is a nonzero x with $x^T y = -||x||_p ||y||_q$. Choose $\xi = ||x||_p$, so that $(\xi, x) \in K_p^{1+n}$. Then $\xi \eta + x^T y = ||x||_p \eta - ||x||_p ||y||_q = ||x||_p (\eta - ||y||_q) < 0$. So $(\eta, y) \notin (K_p^{1+n})^*$. Now we can formulate L_p -regression, min $||Ax - b||_p$, as:

$$(P) \quad \min \quad \beta \\ Ax + v = b \\ (x; \beta; v) \in \mathcal{R}^n \times K_p^{1+m},$$

with dual

$$(D) \max b^{T} u$$

$$A^{T} u + s = 0$$

$$\omega = 1$$

$$u + w = 0$$

$$(s; \omega; w) \in \{0\} \times K_{a}^{1+m}.$$

This gives the simplified form of the dual,

$$\max \quad b^T u \\ A^T u = 0 \\ ||u||_q \leq 1.$$

In general, the distance b from the subspace $\{Ax\}$ in the L_p norm is the maximum component of b in a direction in the null space of A^T with L_q norm at most 1.

Slightly more complicated case: LASSO. Instead of choosing carefully a few columns of A, choose all imaginable ones, corresponding, say, to Fourier expansion, wavelets, splines,... We want to represent b in terms of a few columns of A (avoid overfitting). As a surrogate for minimizing the number of nonzero components of x, we use the sum of the absolute values of the components. Hence we consider min $||Ax - b||_2 + \lambda ||x||_1$, or in conic form:

$$\begin{array}{rcl} (P) & \min & \lambda \xi + \beta \\ & & Ax + v & = & b \\ & & (\xi; x; \beta; v) & \in & K_1^{1+n} \times K_2^{1+m}, \end{array}$$

with dual

(D) max
$$b^T u$$

 $\sigma = \lambda$
 $A^T u + s = 0$
 $\omega = 1$
 $u + w = 0$
 $(\sigma; s; \omega; w) \in K_{\infty}^{1+n} \times K_2^{1+m},$

or in simpler terms,

$$\max \quad b^T u$$
$$||u||_2 \leq 1$$
$$||A^T u||_{\infty} \leq \lambda.$$