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Let 7o € R", and f € Frr :={f :R" — R: f convex, C™! with Lipschitz constant L,
and with a minimizer z, € X, = {z : f(z) = min f(R")} and ||z¢ — z.|| < R}.
Recall the algorithm (gradient method):

Start at xg.
At each iteration k, set xp4y =z — 2V f((2r)).
Recall: . I
Flren) < Fo) — o [V A2 = Floe) = 2 s — ol )

Theorem 1 For f € Zr, this algorithm produces x;, within € of the minimum within LTRz

iterations.
Proof: By the proposition from last lecture,
F(zo) < fla) + V(@) (20 — ) + 5L |0 — 2|
By optimality of z., Vf((z.)) =0, so
f(@wo) = f(x:) < 3LR". (1)

So for any [,
Fwo) = f(wis) < flao) — () < SLR2.

Also summing up f(zx) — f(@r41) > 3 |V f(@x)]|* from (0),

1 < )
517 kZ:O IV f(ze)ll” < flwo) = f(@141).

Hence

Do IVi@)l® < LR (2)

o
inally, , ,
[z 1 = @™ = lloe — 2]l

= |21 — el” + 2(zp1 — 20)T (2 — 20)

B 1 s 2 T (3)
=25 IVF (@)l = 2V ()" (2 — )

<1 IV S = 2(f (@) = Fl).



Hence from (3), f(zx) — f(2.) < 2o — 2o]® = zpss — 2P + 55 IV £ (@)1
So

L 1 &
> (flay) = flz) < 5 llwo = wl* + o D IV
j=0 j=0
< 3LR* + ;LR
< LR*.

Hence f(xg) — f(z.) < iTRi since we have a descent method, and thus a solution within e of

the minimum will be reached within k < LTRQ iterations. O

Now let’s get a lower bound on the complexity of minimizing f € #z. We will establish
a bound assuming that zo = 0 and 11 € span{zo, Vf(zo),...,Vf(zx)}. The following
function(s) is/are universally bad for such algorithms:

o= 5 (3 (4 - o ey ) - )

J=1

for 1 < k <n. Then

2 -1 0 0 --- 0
-1 2 -1 0 --- 0

V2 fi(z) is % o . ' _ .| in the upper-left k-by-k submatrix and 0’s every-
0 v oo 0 —1 2

where else. Denote 4;, = $V2fi(z). Also,

Vfi(z) == L(Apr + .-
0
By the Gershgorin circle theorem, all eigenvalues of Ay are between 0 and 4, so f is convex

and CY! with Lipschitz constant L.
k

s
k+1
fr is minimized by x} := | =5 | with value f} = %(—kiﬂ = —ﬁ.
0
0
2 Xjd 2 k+1)3

Also [|z]|" = (ch+i)2 S S = %EngQ = g(k+1) = R%.

Thus all the requirements for the algorithm are met.

From our assumptions on the algorithm, z; € R™! := {x € R" : e?x =0,j>1}.
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So the algorithm can’t distinguish f;, from f,, p > k, until after k™ iteration.
Let’s apply algorithm to for 1. Within k iterations the algorithm behaves as it does for fi, so
it generates xy with fy(xr) > fi(z}), so forr1(zr) > fr(x}).

But

Ir

So we need at least (55~

3 LR?

Lk L(2k +1)

~ TR+ 1) B2E+2)

Lk 2%k+1
8 \k+1 2k+2

3 1

—— LR~

T 32(k+ 1)

)1/2 steps to get within € of the minimum. In fact, this lower bound
holds for all first-order oracle algorithms.

We have a gap between this lower bound and the upper bound given by the gradient method.
In fact, there is a better algorithm, due to Nesterov, that achieves O (61%) iteration complexity.

In summary,

Lower Bound

Upper Bound

Non-smooth convex min

T

= (short-step subgradient method)

4e2
Smooth convex min (S LE)1/2 LI (gradient method)

(2LE2)1/2 (Nesterov’s optimal algorithm,
conjugate gradient-like)

Structured non-smooth convex min

o)

€

We haven’t seen the result for the structured non-smooth convex minimization problems
yet. Here are two approaches.

One is in the homework: consider the problem

minimize f(x) + g(z)

where f(z) is C*! with Lipschitz constant L, and g(z) is convex but non-smooth.

At each iteration, move to

arg min{ f(z;) + V f ()" (& = 2x) + § L ||l — ay]|* + g(2)}.

But for some non-smooth ¢ this may be not easy.




The other is Nesterov’s smoothing method.
Suppose we want to solve
min f(z)
where f(z) := f(x) +max,ey {27 Ay — §(y)}, where f(x) is C*' with Lipschitz constant L, and
g(y) is convex and smooth, and Y C B(0,1).
There is a dual problem:

max{—g(y) + min{z" Ay + f(2)}}.

But the inner minimization problem may be hard to solve, so a primal-dual algorithm may not
work.
Instead, perturb the inner maximand in the original problem. Consider

folw) = f(a) + glezgc{xTAy —4(y) — 5ellyl*}

so that the term inside the inner max is strictly concave.
Then,

(i) The inner maximization problem has a unique solution.

2
(i) feis continuously differentiable with Lipschitz continuous gradient with constant L+ @.
(iii) f. is close to f: for any z, f.(z) < f(z) < fo(z) + 3.
So minimizing f. within %e of its minimum also minimizes f within € of its minimum.

2
The number of steps required is O((%)l/ %) ~ O(@) by Nesterov’s optimal algo-
rithm.
Finally, why is the Lipschitz constant as stated in (ii)?
Assume g = 0 for simplicity; then the inner problem is

T NT, 1 2
max{(A" )"y — zellyll}-

The unconstrained max is at y(z) = ATTx, and the derivative of this max with respect to x is

2
Ay(z) = 44°= which is Lipschitz with constant @.

€ Y



