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Let x0 ∈ Rn, and f ∈ FLR := {f : Rn → R : f convex, C1,1, with Lipschitz constant L,
and with a minimizer x∗ ∈ X∗ = {x : f(x) = min f(Rn)} and ‖x0 − x∗‖ ≤ R}.
Recall the algorithm (gradient method):
Start at x0.
At each iteration k, set xk+1 = xk − 1

L
∇f((xk)).

Recall:

f(xk+1) ≤ f(xk)−
1

2L

∥∥∇f((xk))
2
∥∥ = f(xk)−

L

2
‖xk+1 − xk‖2 . (0)

Theorem 1 For f ∈ FLR, this algorithm produces xk within ε of the minimum within LR2

ε

iterations.

Proof: By the proposition from last lecture,

f(x0) ≤ f(x∗) +∇f((x∗))
T (x0 − x∗) + 1

2
L ‖x0 − x∗‖2 .

By optimality of x∗, ∇f((x∗)) = 0, so

f(x0)− f(x∗) ≤ 1
2
LR2. (1)

So for any l,
f(x0)− f(xl+1) ≤ f(x0)− f(x∗) ≤ 1

2
LR2.

Also summing up f(xk)− f(xk+1) ≥ 1
2L
‖∇f(xk)‖2 from (0),

1

2L

l∑
k=0

‖∇f(xk)‖2 ≤ f(x0)− f(xl+1).

Hence
∞∑

k=0

‖∇f(xk)‖2 ≤ L2R2. (2)

Finally,
‖xk+1 − x∗‖2 − ‖xk − x∗‖2

= ‖xk+1 − xk‖2 + 2(xk+1 − xk)
T (xk − x∗)

=
1

L2
‖∇f((xk))‖2 − 2

L
∇f(xk)

T (xk − x∗)

≤ 1

L2
‖∇f(xk)‖2 − 2

L
(f(xk)− f(x∗)).

(3)
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Hence from (3), f(xk)− f(x∗) ≤ L
2
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2) + 1

2L
‖∇f(xk)‖2.

So
k∑

j=0

(f(xj)− f(x∗)) ≤
L

2
‖x0 − x∗‖2 +

1

2L

k∑
j=0

‖∇f(xj)‖2

≤ 1
2
LR2 + 1

2
LR2

≤ LR2.

Hence f(xk) − f(x∗) ≤ LR2

k+1
since we have a descent method, and thus a solution within ε of

the minimum will be reached within k ≤ LR2

ε
iterations. ut

Now let’s get a lower bound on the complexity of minimizing f ∈ FLR. We will establish
a bound assuming that x0 = 0 and xk+1 ∈ span{x0,∇f(x0), . . . ,∇f(xk)}. The following
function(s) is/are universally bad for such algorithms:

fk(x) :=
L

4

(
1

2

(
(eT

1 x)2 +
k−1∑
j=1

(eT
j+1x− eT

j x)2 + (eT
k x)2

)
− eT

1 x

)
for 1 ≤ k ≤ n. Then

∇2fk(x) is L
4


2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
...

. . . . . . . . .
...

...
0 · · · · · · 0 −1 2

 in the upper-left k-by-k submatrix and 0’s every-

where else. Denote Ak = 4
L
∇2fk(x). Also,

∇fk(x) := L
4
(Akx +


−1
0
...
0

).

By the Gershgorin circle theorem, all eigenvalues of Ak are between 0 and 4, so f is convex
and C1,1 with Lipschitz constant L.

fk is minimized by x∗k :=



k
k+1
k−1
k+1
...
1

k+1

0
...
0


with value f ∗k = L

4
(− k

k+1
· 1

2
) = − Lk

8(k+1)
.

Also ‖xk‖2 =
Pk

j=1 j2

(k+1)2
≤

R k+1
0 j2dj

(k+1)2
= 1

3
(k+1)3

(k+1)2
= 1

3
(k + 1) =: R2.

Thus all the requirements for the algorithm are met.
From our assumptions on the algorithm, xl ∈ Rn,l := {x ∈ Rn : eT

j x = 0, j > l}.
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So the algorithm can’t distinguish fk from fp, p > k, until after kth iteration.
Let’s apply algorithm to f2k+1. Within k iterations the algorithm behaves as it does for fk, so
it generates xk with fk(xk) ≥ fk(x

∗
k), so f2k+1(xk) ≥ fk(x

∗
k).

But

f ∗k − f ∗2k+1 = − Lk

8(k + 1)
+

L(2k + 1)

8(2k + 2)

= −L

8

(
k

k + 1
− 2k + 1

2k + 2

)
=

L

16
· 1

k + 1

=
1

2
· 3

16
· 1

(k + 1)2
· L
∥∥x∗2k+1 − x0

∥∥2

=
3

32

1

(k + 1)2
LR2.

So we need at least ( 3
32

LR2

ε
)1/2 steps to get within ε of the minimum. In fact, this lower bound

holds for all first-order oracle algorithms.

We have a gap between this lower bound and the upper bound given by the gradient method.
In fact, there is a better algorithm, due to Nesterov, that achieves O

(
1

ε1/2

)
iteration complexity.

In summary,

Lower Bound Upper Bound
Non-smooth convex min 1

4ε2
1
ε2

(short-step subgradient method)

Smooth convex min ( 3
32

LR2

ε
)1/2 LR2

ε
(gradient method)

(2LR2

ε
)1/2 (Nesterov’s optimal algorithm,

conjugate gradient-like)
Structured non-smooth convex min O(1

ε
)

We haven’t seen the result for the structured non-smooth convex minimization problems
yet. Here are two approaches.

One is in the homework: consider the problem

minimize f̂(x) + g(x)

where f̂(x) is C1,1 with Lipschitz constant L, and g(x) is convex but non-smooth.
At each iteration, move to

arg min{f̂(xk) +∇f̂(xk)
T (x− xk) + 1

2
L ‖x− xk‖2 + g(x)}.

But for some non-smooth g this may be not easy.

3



The other is Nesterov’s smoothing method.
Suppose we want to solve

min
x∈X

f(x)

where f(x) := f̂(x)+maxy∈Y {xT Ay− ĝ(y)}, where f̂(x) is C1,1 with Lipschitz constant L, and
ĝ(y) is convex and smooth, and Y ⊆ B(0, 1).
There is a dual problem:

max
y∈Y

{−ĝ(y) + min
x∈X

{xT Ay + f̂(x)}}.

But the inner minimization problem may be hard to solve, so a primal-dual algorithm may not
work.
Instead, perturb the inner maximand in the original problem. Consider

fε(x) := f̂(x) + max
y∈Y

{xT Ay − ĝ(y)− 1
2
ε ‖y‖2}

so that the term inside the inner max is strictly concave.
Then,

(i) The inner maximization problem has a unique solution.

(ii) fε is continuously differentiable with Lipschitz continuous gradient with constant L+ ‖A‖2
ε

.

(iii) fε is close to f : for any x, fε(x) ≤ f(x) ≤ fε(x) + 1
2
ε.

So minimizing fε within 1
2
ε of its minimum also minimizes f within ε of its minimum.

The number of steps required is O((
2(L+

‖A‖2
ε

)R2

ε
)1/2) ∼ O(L1/2R

ε
) by Nesterov’s optimal algo-

rithm.
Finally, why is the Lipschitz constant as stated in (ii)?
Assume ĝ = 0 for simplicity; then the inner problem is

max
y∈Y

{(AT x)T y − 1
2
ε ‖y‖2}.

The unconstrained max is at y(x) = AT x
ε

, and the derivative of this max with respect to x is

Ay(x) = AAT x
ε

, which is Lipschitz with constant ‖A‖2
ε

.
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