Mathematical Programming II
 ORIE 6310 Spring 2014
 Scribe: Nanjing Jian

Lecture 22

Let $x_{0} \in \mathbb{R}^{n}$, and $f \in \mathscr{F}_{L R}:=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}: f\right.$ convex, $C^{1,1}$, with Lipschitz constant L, and with a minimizer $x_{*} \in X_{*}=\left\{x: f(x)=\min f\left(\mathbb{R}^{n}\right)\right\}$ and $\left.\left\|x_{0}-x_{*}\right\| \leq R\right\}$.
Recall the algorithm (gradient method):
Start at x_{0}.
At each iteration k, set $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(\left(x_{k}\right)\right)$.
Recall:

$$
\begin{equation*}
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(\left(x_{k}\right)\right)^{2}\right\|=f\left(x_{k}\right)-\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} . \tag{0}
\end{equation*}
$$

Theorem 1 For $f \in \mathscr{F}_{L R}$, this algorithm produces x_{k} within ϵ of the minimum within $\frac{L R^{2}}{\epsilon}$ iterations.

Proof: By the proposition from last lecture,

$$
f\left(x_{0}\right) \leq f\left(x_{*}\right)+\nabla f\left(\left(x_{*}\right)\right)^{T}\left(x_{0}-x_{*}\right)+\frac{1}{2} L\left\|x_{0}-x_{*}\right\|^{2} .
$$

By optimality of $x_{*}, \nabla f\left(\left(x_{*}\right)\right)=0$, so

$$
\begin{equation*}
f\left(x_{0}\right)-f\left(x_{*}\right) \leq \frac{1}{2} L R^{2} . \tag{1}
\end{equation*}
$$

So for any l,

$$
f\left(x_{0}\right)-f\left(x_{l+1}\right) \leq f\left(x_{0}\right)-f\left(x_{*}\right) \leq \frac{1}{2} L R^{2} .
$$

Also summing up $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}$ from (0),

$$
\frac{1}{2 L} \sum_{k=0}^{l}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq f\left(x_{0}\right)-f\left(x_{l+1}\right)
$$

Hence

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \leq L^{2} R^{2} \tag{2}
\end{equation*}
$$

Finally,

$$
\begin{align*}
& \left\|x_{k+1}-x_{*}\right\|^{2}-\left\|x_{k}-x_{*}\right\|^{2} \\
= & \left\|x_{k+1}-x_{k}\right\|^{2}+2\left(x_{k+1}-x_{k}\right)^{T}\left(x_{k}-x_{*}\right) \\
= & \frac{1}{L^{2}}\left\|\nabla f\left(\left(x_{k}\right)\right)\right\|^{2}-\frac{2}{L} \nabla f\left(x_{k}\right)^{T}\left(x_{k}-x_{*}\right) \tag{3}\\
\leq & \frac{1}{L^{2}}\left\|\nabla f\left(x_{k}\right)\right\|^{2}-\frac{2}{L}\left(f\left(x_{k}\right)-f\left(x_{*}\right)\right) .
\end{align*}
$$

Hence from (3), $f\left(x_{k}\right)-f\left(x_{*}\right) \leq \frac{L}{2}\left(\left\|x_{k}-x_{*}\right\|^{2}-\left\|x_{k+1}-x_{*}\right\|^{2}\right)+\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2}$. So

$$
\begin{aligned}
\sum_{j=0}^{k}\left(f\left(x_{j}\right)-f\left(x_{*}\right)\right) & \leq \frac{L}{2}\left\|x_{0}-x_{*}\right\|^{2}+\frac{1}{2 L} \sum_{j=0}^{k}\left\|\nabla f\left(x_{j}\right)\right\|^{2} \\
& \leq \frac{1}{2} L R^{2}+\frac{1}{2} L R^{2} \\
& \leq L R^{2} .
\end{aligned}
$$

Hence $f\left(x_{k}\right)-f\left(x_{*}\right) \leq \frac{L R^{2}}{k+1}$ since we have a descent method, and thus a solution within ϵ of the minimum will be reached within $k \leq \frac{L R^{2}}{\epsilon}$ iterations.

Now let's get a lower bound on the complexity of minimizing $f \in \mathscr{F}_{L R}$. We will establish a bound assuming that $x_{0}=0$ and $x_{k+1} \in \operatorname{span}\left\{x_{0}, \nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k}\right)\right\}$. The following function(s) is/are universally bad for such algorithms:

$$
f_{k}(x):=\frac{L}{4}\left(\frac{1}{2}\left(\left(e_{1}^{T} x\right)^{2}+\sum_{j=1}^{k-1}\left(e_{j+1}^{T} x-e_{j}^{T} x\right)^{2}+\left(e_{k}^{T} x\right)^{2}\right)-e_{1}^{T} x\right)
$$

for $1 \leq k \leq n$. Then
$\nabla^{2} f_{k}(x)$ is $\frac{L}{4}\left(\begin{array}{cccccc}2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & -1 & 2\end{array}\right)$ in the upper-left k-by- k submatrix and 0 's every-
where else. Denote $A_{k}=\frac{4}{L} \nabla^{2} f_{k}(x)$. Also,

$$
\nabla f_{k}(x):=\frac{L}{4}\left(A_{k} x+\left(\begin{array}{c}
-1 \\
0 \\
\vdots \\
0
\end{array}\right)\right)
$$

By the Gershgorin circle theorem, all eigenvalues of A_{k} are between 0 and 4 , so f is convex and $C^{1,1}$ with Lipschitz constant L.

$$
f_{k} \text { is minimized by } x_{k}^{*}:=\left(\begin{array}{c}
\frac{k}{k+1} \\
\frac{k-1}{k+1} \\
\vdots \\
\frac{1}{k+1} \\
0 \\
\vdots \\
0
\end{array}\right) \text { with value } f_{k}^{*}=\frac{L}{4}\left(-\frac{k}{k+1} \cdot \frac{1}{2}\right)=-\frac{L k}{8(k+1)} \text {. }
$$

Also $\left\|x_{k}\right\|^{2}=\frac{\sum_{j=1}^{k} j^{2}}{(k+1)^{2}} \leq \frac{\int_{0}^{k+1} j^{2} d j}{(k+1)^{2}}=\frac{1}{3} \frac{(k+1)^{3}}{(k+1)^{2}}=\frac{1}{3}(k+1)=: R^{2}$.
Thus all the requirements for the algorithm are met.
From our assumptions on the algorithm, $x_{l} \in \mathbb{R}^{n, l}:=\left\{x \in \mathbb{R}^{n}: e_{j}^{T} x=0, j>l\right\}$.

So the algorithm can't distinguish f_{k} from $f_{p}, p>k$, until after $k^{t h}$ iteration.
Let's apply algorithm to $f_{2 k+1}$. Within k iterations the algorithm behaves as it does for f_{k}, so it generates x_{k} with $f_{k}\left(x_{k}\right) \geq f_{k}\left(x_{k}^{*}\right)$, so $f_{2 k+1}\left(x_{k}\right) \geq f_{k}\left(x_{k}^{*}\right)$.
But

$$
\begin{aligned}
f_{k}^{*}-f_{2 k+1}^{*} & =-\frac{L k}{8(k+1)}+\frac{L(2 k+1)}{8(2 k+2)} \\
& =-\frac{L}{8}\left(\frac{k}{k+1}-\frac{2 k+1}{2 k+2}\right) \\
& =\frac{L}{16} \cdot \frac{1}{k+1} \\
& =\frac{1}{2} \cdot \frac{3}{16} \cdot \frac{1}{(k+1)^{2}} \cdot L\left\|x_{2 k+1}^{*}-x_{0}\right\|^{2} \\
& =\frac{3}{32} \frac{1}{(k+1)^{2}} L R^{2} .
\end{aligned}
$$

So we need at least $\left(\frac{3}{32} \frac{L R^{2}}{\epsilon}\right)^{1 / 2}$ steps to get within ϵ of the minimum. In fact, this lower bound holds for all first-order oracle algorithms.

We have a gap between this lower bound and the upper bound given by the gradient method. In fact, there is a better algorithm, due to Nesterov, that achieves $\mathcal{O}\left(\frac{1}{\epsilon^{1 / 2}}\right)$ iteration complexity.

In summary,

	Lower Bound	Upper Bound
Non-smooth convex min	$\frac{1}{4 \epsilon^{2}}$	$\frac{1}{\epsilon^{2}}$ (short-step subgradient method)
Smooth convex min	$\left(\frac{3}{32} \frac{L R^{2}}{\epsilon}\right)^{1 / 2}$	$\frac{L R^{2}}{\epsilon}($ gradient method) $\left(\frac{2 L R^{2}}{\epsilon}\right)^{1 / 2}$ (Nesterov's optimal algorithm, conjugate gradient-like)
Structured non-smooth convex min		$\mathcal{O}\left(\frac{1}{\epsilon}\right)$

We haven't seen the result for the structured non-smooth convex minimization problems yet. Here are two approaches.

One is in the homework: consider the problem

$$
\operatorname{minimize} \hat{f}(x)+g(x)
$$

where $\hat{f}(x)$ is $C^{1,1}$ with Lipschitz constant L, and $g(x)$ is convex but non-smooth.
At each iteration, move to

$$
\arg \min \left\{\hat{f}\left(x_{k}\right)+\nabla \hat{f}\left(x_{k}\right)^{T}\left(x-x_{k}\right)+\frac{1}{2} L\left\|x-x_{k}\right\|^{2}+g(x)\right\} .
$$

But for some non-smooth g this may be not easy.

The other is Nesterov's smoothing method.
Suppose we want to solve

$$
\min _{x \in X} f(x)
$$

where $f(x):=\hat{f}(x)+\max _{y \in Y}\left\{x^{T} A y-\hat{g}(y)\right\}$, where $\hat{f}(x)$ is $C^{1,1}$ with Lipschitz constant L, and $\hat{g}(y)$ is convex and smooth, and $Y \subseteq B(0,1)$.
There is a dual problem:

$$
\max _{y \in Y}\left\{-\hat{g}(y)+\min _{x \in X}\left\{x^{T} A y+\hat{f}(x)\right\}\right\} .
$$

But the inner minimization problem may be hard to solve, so a primal-dual algorithm may not work.
Instead, perturb the inner maximand in the original problem. Consider

$$
f_{\epsilon}(x):=\hat{f}(x)+\max _{y \in Y}\left\{x^{T} A y-\hat{g}(y)-\frac{1}{2} \epsilon\|y\|^{2}\right\}
$$

so that the term inside the inner max is strictly concave.
Then,
(i) The inner maximization problem has a unique solution.
(ii) f_{ϵ} is continuously differentiable with Lipschitz continuous gradient with constant $L+\frac{\|A\|^{2}}{\epsilon}$.
(iii) f_{ϵ} is close to f : for any $x, f_{\epsilon}(x) \leq f(x) \leq f_{\epsilon}(x)+\frac{1}{2} \epsilon$.

So minimizing f_{ϵ} within $\frac{1}{2} \epsilon$ of its minimum also minimizes f within ϵ of its minimum.
The number of steps required is $\mathcal{O}\left(\left(\frac{2\left(L+\frac{\|A\|^{2}}{\epsilon}\right) R^{2}}{\epsilon}\right)^{1 / 2}\right) \sim \mathcal{O}\left(\frac{L^{1 / 2} R}{\epsilon}\right)$ by Nesterov's optimal algorithm.
Finally, why is the Lipschitz constant as stated in (ii)?
Assume $\hat{g}=0$ for simplicity; then the inner problem is

$$
\max _{y \in Y}\left\{\left(A^{T} x\right)^{T} y-\frac{1}{2} \epsilon\|y\|^{2}\right\}
$$

The unconstrained max is at $y(x)=\frac{A^{T} x}{\epsilon}$, and the derivative of this max with respect to x is $A y(x)=\frac{A A^{T} x}{\epsilon}$, which is Lipschitz with constant $\frac{\|A\|^{2}}{\epsilon}$.

