Mathematical Programming II
ORIE 6310 Spring 2014
Scribe: Jiayi Guo

Recall the algorithm for minimizing a convex function f over $B(0, R)$, where we assume f has range at most one on this ball. Let x_{*} minimize f over the ball.

Start with $x_{0}=0$.
At iteration k, if $\left\|x_{k}\right\|>R$, choose $v_{k}=x_{k}$; otherwise compute a subgradient g_{k} of f at x_{k}, and stop if $g_{k}=0$. Otherwise, $v_{k}=g_{k}$.

Set $x_{k+1}:=x_{k}-\epsilon R \frac{v_{k}}{\left\|v_{k}\right\|}$.
Theorem 1 This algorithm generates a solution within ϵ of the minimum within ϵ^{-2} iterations.
Proof: We have as before

$$
\left\|x_{k+1}-x_{*}\right\|^{2}-\left\|x_{k}-x_{*}\right\|^{2}=\left\|x_{k+1}-x_{k}\right\|^{2}+2\left(x_{k+1}-x_{k}\right)^{T}\left(x_{k}-x_{*}\right)
$$

In fact, we'll replace x_{*} by $\bar{x}=(1-\epsilon) x_{*}=(1-\epsilon) x_{*}+\epsilon \cdot 0$, which is the center of the ball $\left\{x_{*}\right\}+\epsilon B(0, R) \subseteq B(0, R)$, and $f(x) \leq f\left(x_{*}\right)+\epsilon$ for all x in this small ball. From the identity above, with \bar{x} instead of x_{*},

$$
\left\|x_{k+1}-\bar{x}\right\|^{2}-\left\|x_{k}-\bar{x}\right\|^{2}=\epsilon^{2} R^{2}-\frac{2 \epsilon R}{\left\|v_{k}\right\|} v_{k}^{T}\left(x_{k}-\bar{x}\right) .
$$

Note: $v_{k}^{T}\left(x_{k}-\bar{x}\right)=v_{k}^{T}\left(x_{k}-\left(\bar{x}+\frac{\epsilon R v_{k}}{\left\|v_{k}\right\|}\right)\right)+\epsilon R\left\|v_{k}\right\|$:

1. if $x_{k} \notin B(0, R), v_{k}^{T}\left(x_{k}-\left(\bar{x}+\frac{\epsilon R v_{k}}{\left\|v_{k}\right\|}\right)\right) \geq 0$, because $v_{k}=x_{k}$ (separating hyperplane);
2. if $x_{k} \in B(0, R)$,

$$
\begin{aligned}
v_{k}^{T}\left(x_{k}-\left(\bar{x}+\frac{\epsilon R v_{k}}{\left\|v_{k}\right\|}\right)\right) & \left.\geq f\left(x_{k}\right)-f\left(\bar{x}+\frac{\epsilon R v_{k}}{\left\|v_{k}\right\|}\right)\right) \\
& \geq f\left(x_{k}\right)-\left(f\left(x_{*}\right)+\epsilon\right) \\
& \geq 0 \text { if } f\left(x_{k}\right) \geq f\left(x_{*}\right)+\epsilon
\end{aligned}
$$

Hence, as long as $f\left(x_{k}\right) \geq f\left(x_{*}\right)+\epsilon$, we have

$$
\left\|x_{k+1}-\bar{x}\right\|^{2}-\left\|x_{k}-\bar{x}\right\|^{2} \leq \epsilon^{2} R^{2}-2 \frac{\epsilon R}{\left\|v_{k}\right\|} \cdot \epsilon R\left\|v_{k}\right\|=-\epsilon^{2} R^{2}
$$

So $\left\|x_{l}-\bar{x}\right\|^{2} \leq\left\|x_{0}-\bar{x}\right\|^{2}-l \epsilon^{2} R^{2} \leq R^{2}-l \epsilon^{2} R^{2}$ as long as $\min _{0 \leq k \leq l} f\left(x_{k}\right)>f\left(x_{*}\right)+\epsilon$ whence $l \leq \epsilon^{-2}$. If $l=\epsilon^{-2}$ with all iterates up to x_{l} having too large f, then $x_{l}=\bar{x}$ and $f\left(x_{l}\right) \leq f\left(x_{*}\right)+\epsilon$, a contradiction. So this inequality holds within ϵ^{-2} steps.

This algorithm seems stupid, taking very small steps independent of f, but it is within a constant factor of optimal!

WLOG we'll assume $R=\frac{1}{2}$ and consider functions in the class

$$
\mathcal{F}_{0}:=\left\{f(x) \equiv \max _{1 \leq j \leq M}\left\{\sigma_{j}\left(e_{j}^{T} x\right)+\tau_{j}: \sigma_{j} \in\{-1,+1\}, \tau_{j} \in(0, \delta)\right\}\right\}
$$

Theorem 2 Every first-order oracle algorithm to minimize convex functions f with range at most 1 on $B\left(0, \frac{1}{2}\right)$ with $n \geq \frac{1}{4 \epsilon^{2}}$ will take at least $\left\lfloor\frac{1}{4 \epsilon^{2}}\right\rfloor$ steps on some such function to get within ϵ of its minimum.

Proof: Choose $M=\left\lfloor\frac{1}{4 \epsilon^{2}}\right\rfloor-1$, so $M \leq n$ and $\delta:=-\epsilon+\frac{1}{2 \sqrt{M}}>0$.
The algorithm generates $x_{1} \in \Re^{n}$ independent of f. Let j_{1} be the index of its largest component in absolute value.

Choose $\sigma_{j_{1}}=\bar{\sigma}_{j_{1}}$ so that $\sigma_{j_{1}} e_{j_{1}}^{T} x_{1} \geq 0$ and choose $\tau_{j_{1}}=\bar{\tau}_{j_{1}}=\frac{\delta}{2}$.
Now consider

$$
\mathcal{F}_{k}=\left\{f \in \mathcal{F}_{0}: \sigma_{j_{i}}=\bar{\sigma}_{j_{i}}, \tau_{j_{i}}=\bar{\tau}_{j_{i}} \text { for } 1 \leq i \leq k, \text { and } \tau_{j}<\frac{\delta}{2^{k}} \text { for } j \notin\left\{j_{1}, . ., j_{k}\right\}\right\}
$$

Note that $f\left(x_{1}\right)$ and $g\left(x_{1}\right) \in \partial f\left(x_{1}\right)$ are the same for all $f \in \mathcal{F}_{1}$. After $k-1$ iterations, we have x_{k}, and set j_{k} to be the index of the largest in absolute value component of x_{k}, not in $\left\{j_{1}, \ldots, j_{k-1}\right\}$.

Choose $\sigma_{j_{k}}=\bar{\sigma}_{j_{k}}$ so that $\sigma_{j_{k}} e_{j_{k}}^{T} x_{k} \geq 0$ and $\tau_{j_{k}}=\bar{\tau}_{j_{k}}=\frac{\delta}{2^{k}}$.
After M steps, \mathcal{F}_{M} is just a single function.
For $1 \leq k \leq M, f\left(x_{k}\right) \geq \bar{\sigma}_{j_{k}}\left(e_{j_{k}}^{T} x_{k}\right)+\bar{\tau}_{j_{k}} \geq \frac{\delta}{2^{M}}>0$.
But consider \bar{x} with $e_{j}^{T} \bar{x}= \begin{cases}-\bar{\sigma}_{j} \frac{1}{2 \sqrt{M}} & j=1,2 . ., M \\ 0 & \text { ow. }\end{cases}$
Then $\|\bar{x}\|=\frac{1}{2}$, so \bar{x} lies inside $B\left(0, \frac{1}{2}\right)$. Also $f(\bar{x})=\max \left\{\left(-\frac{1}{2 \sqrt{M}}+\tau_{j}\right)\right\} \leq-\frac{1}{2 \sqrt{M}}+\delta=-\epsilon$.
So we cannot have generated a solution within ϵ of the minimum, so we need at least $\left\lfloor\frac{1}{4 \epsilon^{2}}\right\rfloor$ steps.

The "stupid" algorithm always take steps of size ϵR, so needs to chose ϵ in advance. But if we choose $\lambda_{k}=\frac{R}{\sqrt{k+1}}$ (to satisfy the conditions of Polyak's convergence result) we also need only a little more than $O\left(\frac{1}{\epsilon^{2}}\right)$ steps.

Also if $f_{*}=\min f(B(0, R))$ is known, in practice, $\lambda_{k}=\frac{f\left(x_{k}\right)-f_{*}}{\left\|g_{k}\right\|}$ is much better.

Now we turn to smooth convex functions.
We'll look at $C^{1,1}$ functions, i.e., continuously differentiable with Lipschitz continuous gradients.

For all $x, y \in \Re^{n}$, assume

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

Proposition 1 If f as above is convex, then for all $x, y \in \Re^{n}$,
$f(x)+\nabla f(x)^{T}(y-x) \leq f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2} L\|y-x\|^{2}$.
Proof: The LH inequality follows by convexity. For the RH inequality,

$$
\begin{aligned}
f(y) & =f(x)+\int_{0}^{1} \nabla f(x+\lambda(y-x))^{T}(y-x) d \lambda \\
& =f(x)+\nabla f(x)^{T}(y-x)+\int_{0}^{1}(\nabla f(x+\lambda(y-x))-\nabla f(x))^{T}(y-x) d \lambda \\
& \leq f(x)+\nabla f(x)^{T}(y-x)+\int_{0}^{1}\|\nabla f(x+\lambda(y-x))-\nabla f(x)\| \cdot\|y-x\| d \lambda
\end{aligned}
$$

by Cauchy-Schwarz

$$
\begin{aligned}
& \leq f(x)+\nabla f(x)^{T}(y-x)+L\|y-x\|^{2} \int_{0}^{1} \lambda d \lambda \\
& =f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2} L\|y-x\|^{2} .
\end{aligned}
$$

Note: given x, the RHS in the proposition is minimized by $y=x_{+}=x-\frac{1}{L} \nabla f(x)$.
Remark: we will assume that L is known so we can make this update. Extensions of this algorithm keep an estimate of L and adjust it during the iterations.

If we update x this way, then

$$
\begin{align*}
f\left(x_{+}\right) & \leq f(x)+\nabla f(x)^{T}\left(x_{+}-x\right)+\frac{1}{2} L\left\|x_{+}-x\right\|^{2} \\
& =f(x)-\frac{1}{L}\|\nabla f(x)\|^{2}+\frac{1}{2 L}\|\nabla f(x)\|^{2} \\
& =f(x)-\frac{1}{2 L}\|\nabla f(x)\|^{2} \tag{1}\\
& =f(x)-\frac{1}{2} L\left\|x_{+}-x\right\|^{2} .
\end{align*}
$$

Theorem 3 If we turn the update into an algorithm for functions in this class with $\left\|x_{0}-x_{*}\right\| \leq$ R for some x_{*} minimizing f, then the algorithm produces an iterate within ϵ of the minimum in $\frac{L R^{2}}{\epsilon}$ steps.

