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Recall the algorithm for minimizing a convex function f over B(0, R), where we assume f
has range at most one on this ball. Let x∗ minimize f over the ball.

Start with x0 = 0.
At iteration k, if ‖xk‖ > R, choose vk = xk; otherwise compute a subgradient gk of f at xk,

and stop if gk = 0. Otherwise, vk = gk.
Set xk+1 := xk − εR vk

‖vk‖
.

Theorem 1 This algorithm generates a solution within ε of the minimum within ε−2 iterations.

Proof: We have as before

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 = ‖xk+1 − xk‖2 + 2(xk+1 − xk)
T (xk − x∗)

In fact, we’ll replace x∗ by x̄ = (1− ε)x∗ = (1− ε)x∗ + ε · 0, which is the center of the ball
{x∗}+ εB(0, R) ⊆ B(0, R), and f(x) ≤ f(x∗) + ε for all x in this small ball. From the identity
above, with x̄ instead of x∗,

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 = ε2R2 − 2εR

‖vk‖
vT

k (xk − x̄).

Note: vT
k (xk − x̄) = vT

k (xk − (x̄ + εRvk

‖vk‖
)) + εR‖vk‖:

1. if xk /∈ B(0, R), vT
k (xk − (x̄ + εRvk

‖vk‖
)) ≥ 0, because vk = xk (separating hyperplane);

2. if xk ∈ B(0, R),

vT
k (xk − (x̄ +

εRvk

‖vk‖
)) ≥ f(xk)− f(x̄ +

εRvk

‖vk‖
))

≥ f(xk)− (f(x∗) + ε)

≥ 0 if f(xk) ≥ f(x∗) + ε.

Hence, as long as f(xk) ≥ f(x∗) + ε, we have

‖xk+1 − x̄‖2 − ‖xk − x̄‖2 ≤ ε2R2 − 2
εR

‖vk‖
· εR‖vk‖ = −ε2R2.

So ‖xl − x̄‖2 ≤ ‖x0 − x̄‖2 − lε2R2 ≤ R2 − lε2R2 as long as min0≤k≤l f(xk) > f(x∗) + ε
whence l ≤ ε−2. If l = ε−2 with all iterates up to xl having too large f , then xl = x̄ and
f(xl) ≤ f(x∗) + ε, a contradiction. So this inequality holds within ε−2 steps.

ut
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This algorithm seems stupid, taking very small steps independent of f , but it is within a
constant factor of optimal!

WLOG we’ll assume R = 1
2

and consider functions in the class

F0 := {f(x) ≡ max
1≤j≤M

{σj(e
T
j x) + τj : σj ∈ {−1, +1}, τj ∈ (0, δ)}}.

Theorem 2 Every first-order oracle algorithm to minimize convex functions f with range at
most 1 on B(0, 1

2
) with n ≥ 1

4ε2
will take at least b 1

4ε2
c steps on some such function to get within

ε of its minimum.

Proof: Choose M = b 1
4ε2
c − 1, so M ≤ n and δ := −ε + 1

2
√

M
> 0.

The algorithm generates x1 ∈ <n independent of f . Let j1 be the index of its largest
component in absolute value.

Choose σj1 = σ̄j1 so that σj1e
T
j1

x1 ≥ 0 and choose τj1 = τ̄j1 = δ
2
.

Now consider

Fk = {f ∈ F0 : σji
= σ̄ji

, τji
= τ̄ji

for 1 ≤ i ≤ k, and τj <
δ

2k
for j /∈ {j1, .., jk}}.

Note that f(x1) and g(x1) ∈ ∂f(x1) are the same for all f ∈ F1. After k − 1 iterations, we
have xk, and set jk to be the index of the largest in absolute value component of xk, not in
{j1, ..., jk−1}.

Choose σjk
= σ̄jk

so that σjk
eT

jk
xk ≥ 0 and τjk

= τ̄jk
= δ

2k .
After M steps, FM is just a single function.
For 1 ≤ k ≤ M , f(xk) ≥ σ̄jk

(eT
jk

xk) + τ̄jk
≥ δ

2M > 0.

But consider x̄ with eT
j x̄ =

{
−σ̄j

1
2
√

M
j = 1, 2.., M

0 ow.

Then ‖x̄‖ = 1
2
, so x̄ lies inside B(0, 1

2
). Also f(x̄) = max{(− 1

2
√

M
+ τj)} ≤ − 1

2
√

M
+ δ = −ε.

So we cannot have generated a solution within ε of the minimum, so we need at least b 1
4ε2
c

steps. ut

The “stupid” algorithm always take steps of size εR, so needs to chose ε in advance. But
if we choose λk = R√

k+1
(to satisfy the conditions of Polyak’s convergence result) we also need

only a little more than O( 1
ε2

) steps.

Also if f∗ = min f(B(0, R)) is known, in practice, λk = f(xk)−f∗
‖gk‖

is much better.
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Now we turn to smooth convex functions.
We’ll look at C1,1 functions, i.e., continuously differentiable with Lipschitz continuous gra-

dients.
For all x, y ∈ <n, assume

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Proposition 1 If f as above is convex, then for all x, y ∈ <n,
f(x) +∇f(x)T (y − x) ≤ f(y) ≤ f(x) +∇f(x)T (y − x) + 1

2
L‖y − x‖2.

Proof: The LH inequality follows by convexity. For the RH inequality,

f(y) = f(x) +

∫ 1

0

∇f(x + λ(y − x))T (y − x)dλ

= f(x) +∇f(x)T (y − x) +

∫ 1

0

(∇f(x + λ(y − x))−∇f(x))T (y − x)dλ

≤ f(x) +∇f(x)T (y − x) +

∫ 1

0

‖∇f(x + λ(y − x))−∇f(x)‖ · ‖y − x‖dλ

by Cauchy-Schwarz

≤ f(x) +∇f(x)T (y − x) + L‖y − x‖2

∫ 1

0

λdλ

= f(x) +∇f(x)T (y − x) +
1

2
L‖y − x‖2.

ut

Note: given x, the RHS in the proposition is minimized by y = x+ = x− 1
L
∇f(x).

Remark: we will assume that L is known so we can make this update. Extensions of this
algorithm keep an estimate of L and adjust it during the iterations.

If we update x this way, then

f(x+) ≤ f(x) +∇f(x)T (x+ − x) +
1

2
L‖x+ − x‖2

= f(x)− 1

L
‖∇f(x)‖2 +

1

2L
‖∇f(x)‖2

= f(x)− 1

2L
‖∇f(x)‖2

= f(x)− 1

2
L‖x+ − x‖2.

(1)

Theorem 3 If we turn the update into an algorithm for functions in this class with ‖x0−x∗‖ ≤
R for some x∗ minimizing f , then the algorithm produces an iterate within ε of the minimum
in LR2

ε
steps.
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