Recall the algorithm for minimizing a convex function f over B(0, R), where we assume f has range at most one on this ball. Let x_* minimize f over the ball.

Start with $x_0 = 0$.

At iteration k, if $||x_k|| > R$, choose $v_k = x_k$; otherwise compute a subgradient g_k of f at x_k , and stop if $g_k = 0$. Otherwise, $v_k = g_k$.

Set $x_{k+1} := x_k - \epsilon R \frac{v_k}{\|v_k\|}$.

Theorem 1 This algorithm generates a solution within ϵ of the minimum within ϵ^{-2} iterations.

Proof: We have as before

$$||x_{k+1} - x_*||^2 - ||x_k - x_*||^2 = ||x_{k+1} - x_k||^2 + 2(x_{k+1} - x_k)^T (x_k - x_*)^T (x_$$

In fact, we'll replace x_* by $\bar{x} = (1 - \epsilon)x_* = (1 - \epsilon)x_* + \epsilon \cdot 0$, which is the center of the ball $\{x_*\} + \epsilon B(0, R) \subseteq B(0, R)$, and $f(x) \leq f(x_*) + \epsilon$ for all x in this small ball. From the identity above, with \bar{x} instead of x_* ,

$$||x_{k+1} - \bar{x}||^2 - ||x_k - \bar{x}||^2 = \epsilon^2 R^2 - \frac{2\epsilon R}{||v_k||} v_k^T (x_k - \bar{x}).$$

Note: $v_k^T(x_k - \bar{x}) = v_k^T(x_k - (\bar{x} + \frac{\epsilon R v_k}{\|v_k\|})) + \epsilon R \|v_k\|$:

1. if $x_k \notin B(0, R)$, $v_k^T(x_k - (\bar{x} + \frac{\epsilon R v_k}{\|v_k\|})) \ge 0$, because $v_k = x_k$ (separating hyperplane); 2. if $x_k \in B(0, R)$,

$$v_k^T(x_k - (\bar{x} + \frac{\epsilon R v_k}{\|v_k\|})) \geq f(x_k) - f(\bar{x} + \frac{\epsilon R v_k}{\|v_k\|}))$$

$$\geq f(x_k) - (f(x_*) + \epsilon)$$

$$\geq 0 \quad \text{if } f(x_k) \geq f(x_*) + \epsilon$$

Hence, as long as $f(x_k) \ge f(x_*) + \epsilon$, we have

$$||x_{k+1} - \bar{x}||^2 - ||x_k - \bar{x}||^2 \le \epsilon^2 R^2 - 2\frac{\epsilon R}{||v_k||} \cdot \epsilon R||v_k|| = -\epsilon^2 R^2.$$

So $||x_l - \bar{x}||^2 \leq ||x_0 - \bar{x}||^2 - l\epsilon^2 R^2 \leq R^2 - l\epsilon^2 R^2$ as long as $\min_{0 \leq k \leq l} f(x_k) > f(x_*) + \epsilon$ whence $l \leq \epsilon^{-2}$. If $l = \epsilon^{-2}$ with all iterates up to x_l having too large f, then $x_l = \bar{x}$ and $f(x_l) \leq f(x_*) + \epsilon$, a contradiction. So this inequality holds within ϵ^{-2} steps.

This algorithm seems stupid, taking very small steps independent of f, but it is within a constant factor of optimal!

WLOG we'll assume $R = \frac{1}{2}$ and consider functions in the class

$$\mathcal{F}_0 := \{ f(x) \equiv \max_{1 \le j \le M} \{ \sigma_j(e_j^T x) + \tau_j : \sigma_j \in \{-1, +1\}, \tau_j \in (0, \delta) \} \}.$$

Theorem 2 Every first-order oracle algorithm to minimize convex functions f with range at most 1 on $B(0,\frac{1}{2})$ with $n \geq \frac{1}{4\epsilon^2}$ will take at least $\lfloor \frac{1}{4\epsilon^2} \rfloor$ steps on some such function to get within ϵ of its minimum.

Proof: Choose $M = \lfloor \frac{1}{4\epsilon^2} \rfloor - 1$, so $M \leq n$ and $\delta := -\epsilon + \frac{1}{2\sqrt{M}} > 0$. The algorithm generates $x_1 \in \Re^n$ independent of f. Let j_1 be the index of its largest component in absolute value.

Choose $\sigma_{j_1} = \bar{\sigma}_{j_1}$ so that $\sigma_{j_1} e_{j_1}^T x_1 \ge 0$ and choose $\tau_{j_1} = \bar{\tau}_{j_1} = \frac{\delta}{2}$. Now consider

$$\mathcal{F}_k = \{ f \in \mathcal{F}_0 : \sigma_{j_i} = \bar{\sigma}_{j_i}, \tau_{j_i} = \bar{\tau}_{j_i} \text{ for } 1 \le i \le k, \text{ and } \tau_j < \frac{\delta}{2^k} \text{ for } j \notin \{j_1, .., j_k\} \}.$$

Note that $f(x_1)$ and $g(x_1) \in \partial f(x_1)$ are the same for all $f \in \mathcal{F}_1$. After k-1 iterations, we have x_k , and set j_k to be the index of the largest in absolute value component of x_k , not in $\{j_1, ..., j_{k-1}\}.$

Choose $\sigma_{j_k} = \bar{\sigma}_{j_k}$ so that $\sigma_{j_k} e_{j_k}^T x_k \ge 0$ and $\tau_{j_k} = \bar{\tau}_{j_k} = \frac{\delta}{2^k}$. After M steps, \mathcal{F}_M is just a single function. For $1 \le k \le M$, $f(x_k) \ge \overline{\sigma}_{j_k}(e_{j_k}^T x_k) + \overline{\tau}_{j_k} \ge \frac{\delta}{2^M} > 0$. But consider \bar{x} with $e_j^T \bar{x} = \begin{cases} -\bar{\sigma}_j \frac{1}{2\sqrt{M}} & j = 1, 2.., M \\ 0 & ow. \end{cases}$

Then $\|\bar{x}\| = \frac{1}{2}$, so \bar{x} lies inside $B(0, \frac{1}{2})$. Also $f(\bar{x}) = \max\{(-\frac{1}{2\sqrt{M}} + \tau_j)\} \le -\frac{1}{2\sqrt{M}} + \delta = -\epsilon$. So we cannot have generated a solution within ϵ of the minimum, so we need at least $\lfloor \frac{1}{4\epsilon^2} \rfloor$ steps. \Box

The "stupid" algorithm always take steps of size ϵR , so needs to chose ϵ in advance. But if we choose $\lambda_k = \frac{R}{\sqrt{k+1}}$ (to satisfy the conditions of Polyak's convergence result) we also need only a little more than $O(\frac{1}{\epsilon^2})$ steps.

Also if $f_* = \min f(B(0, R))$ is known, in practice, $\lambda_k = \frac{f(x_k) - f_*}{\|q_k\|}$ is much better.

Now we turn to smooth convex functions.

We'll look at $C^{1,1}$ functions, i.e., continuously differentiable with Lipschitz continuous gradients.

For all $x, y \in \Re^n$, assume

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$

Proposition 1 If f as above is convex, then for all $x, y \in \Re^n$, $f(x) + \nabla f(x)^T (y - x) \le f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{1}{2}L ||y - x||^2.$

Proof: The LH inequality follows by convexity. For the RH inequality,

$$\begin{aligned} f(y) &= f(x) + \int_0^1 \nabla f(x + \lambda(y - x))^T (y - x) d\lambda \\ &= f(x) + \nabla f(x)^T (y - x) + \int_0^1 (\nabla f(x + \lambda(y - x)) - \nabla f(x))^T (y - x) d\lambda \\ &\leq f(x) + \nabla f(x)^T (y - x) + \int_0^1 \|\nabla f(x + \lambda(y - x)) - \nabla f(x)\| \cdot \|y - x\| d\lambda \\ &\qquad \text{by Cauchy-Schwarz} \end{aligned}$$

$$\leq f(x) + \nabla f(x)^{T}(y-x) + L \|y-x\|^{2} \int_{0}^{1} \lambda d\lambda$$

= $f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2}L \|y-x\|^{2}.$

г		
н		
н		

Note: given x, the RHS in the proposition is minimized by $y = x_+ = x - \frac{1}{L} \nabla f(x)$.

Remark: we will assume that L is known so we can make this update. Extensions of this algorithm keep an estimate of L and adjust it during the iterations.

If we update x this way, then

$$f(x_{+}) \leq f(x) + \nabla f(x)^{T} (x_{+} - x) + \frac{1}{2} L \|x_{+} - x\|^{2}$$

$$= f(x) - \frac{1}{L} \|\nabla f(x)\|^{2} + \frac{1}{2L} \|\nabla f(x)\|^{2}$$

$$= f(x) - \frac{1}{2L} \|\nabla f(x)\|^{2}$$

$$= f(x) - \frac{1}{2} L \|x_{+} - x\|^{2}.$$
(1)

Theorem 3 If we turn the update into an algorithm for functions in this class with $||x_0 - x_*|| \le R$ for some x_* minimizing f, then the algorithm produces an iterate within ϵ of the minimum in $\frac{LR^2}{\epsilon}$ steps.