Mathematical Programming II
ORIE 6310 Spring 2014
Scribe: James Dong

Lecture 20 April 10, 2014

1 Subgradient Method

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Recall that the subdifferential of f is the set of subgradients:

$$\partial f(x) := \left\{ g \in \mathbb{R}^n : f(y) \ge f(x) + g^T(y - x), \ \forall \ y \in \mathbb{R}^n \right\}.$$

Assume that at each x, we can compute a *single* subgradient g = g(x), e.g., as in the Lagrangian relaxation approach to hard problems.

While the subdifferential tells us a lot about the behavior of f around x, a single subgradient doesn't reveal very much.

Consider the directional derivative of f at x in direction d:

$$f'(x;d) := \lim_{\lambda \downarrow 0} \left\{ \frac{f(x + \lambda d) - f(x)}{\lambda} =: q(x, d, \lambda) \right\}.$$

Note that because q is nondecreasing in λ , the limit exists and $f'(x;d) = \inf_{\lambda>0} \{q(x,d,\lambda)\}$

Note also that $q(x, d, \lambda) \ge g^T d \ \forall \ g \in \partial f(x)$.

Hence, $f'(x;d) \geq g^T d \ \forall \ g \in \partial f(x)$, so that $f'(x;d) \geq \max \{g^T d : g \in \partial f(x)\}$

In fact, it can be shown (see Borwein and Lewis, "Convex Analysis and Nonlinear Optimization: Theory and Examples") that

$$f'(x;d) = \max \{g^T d : g \in \partial f(x)\}.$$

So in particular, if $g \in \partial f(x)$ and $g \neq 0$, then g is an ascent direction for f at x since $f'(x;g) \geq g^T g > 0$. However, -g may not be a descent direction: $f'(x;-g) = \max\{(-g)^T h : h \in \partial f(x)\} \geq -g^T g < 0$ might be positive. See Figure 2 of Lecture 19.

Theorem 1 x is a global minimizer of f if and only if $0 \in \partial f(x)$.

Proof:

The "if" component is trivial through the definition of a subgradient.

We prove the "only if" portion through contradiction, "constructively." Suppose 0 is not in the closed convex set $\partial f(x)$. Then there is some $0 \neq d \in \mathbb{R}^n$ such that $0^T d = 0 > \max\{g^T d: g \in \partial f(x)\} = f'(x;d)$.

So x is not even a local minimizer since d is a descent direction. \Box

Corollary 1 If $0 \notin \partial f(x)$, then $d = -\arg\min\{\|g\| : g \in \partial f(x)\}$ is a descent direction for f at x.

2 Two Alternatives

- 1. Try to find more points in $\partial f(x)$ until we can get a descent direction:
 - (a) Bundle methods (Lemaréchal, 1970s),
 - (b) Gradient Sampling Methods (Burke, Lewis, Overton).
- 2. Move in the direction -g even if it is not a descent direction.

We will show how to choose a very general step size rule that is independent of f.

General Subgradient Algorithm (N.Z. Shor, 1960s)

Choose $x_0 \in \mathbb{R}^n$ and a sequence $\{\lambda_k\}$ of positive scalars. At iteration k, compute a subgradient g_k of f at x_k . Stop if $g_k = 0$. Otherwise, set $x_{k+1} := x_k - \lambda_k \frac{g_k}{\|g_k\|}$.

Theorem 2 (B.T. Polyak, 1967) Suppose $X_* := \{x_* \in \mathbb{R}^n : f(x) \ge f(x_*) \ \forall \ x \in \mathbb{R}^n\} \ne \emptyset$. Then, as long as $\sum_{k=0}^{\infty} \lambda_k = \infty$ and $\sum_{k=0}^{\infty} \lambda_k^2 < \infty$, for any $x_0 \in \mathbb{R}^n$, $\liminf_k f(x_k) = \min_k f(\mathbb{R}^n)$ for $\{x_k\}$ generated by the subgradient method.

Proof: Choose any $x_* \in X_*$ and look at $||x_k - x_*||$ before and after a step.

$$||x_{k+1} - x_*||^2 - ||x_k - x_*||^2 = ||x_{k+1}||^2 - ||x_k||^2 - 2x_{k+1}^T x_* + 2x_k^T x_*$$

$$= ||x_{k+1} - x_k||^2 + 2(x_{k+1} - x_k)^T (x_k - x_*)$$

$$= \lambda_k^2 - 2\lambda_k \frac{g_k}{||g_k||}^T (x_k - x_*).$$

By the subgradient inequality, $g_k^T(x_k - x_*) \ge f_k - f_* \ge 0$, where $f_{\bullet} := f(x_{\bullet})$.

So
$$||x_{\ell} - x_*||^2 - ||x_0 - x_*||^2 \le \sum_{k=0}^{\ell-1} \lambda_k^2$$
.

Hence, $\{x_\ell\}$ lies in some bounded set since $\sum_{k=0}^{\infty} \lambda_k^2 < \infty$. So all $\|g_\ell\|$'s are uniformly bounded (true but not obvious: proof omitted).

So $||g_k|| \leq \Gamma \ \forall \ k$ for some Γ .

Now assume $f_k \geq f_* + \varepsilon$, for some $\varepsilon > 0$, $\forall k \geq K_1$. Also, $\lambda_k \downarrow 0$ so $\lambda_k \leq \frac{\varepsilon}{\Gamma} \forall k \geq K_2 \geq K_1$. Then for $k \geq K_2$,

$$||x_{k+1} - x_*||^2 - ||x_k - x_*||^2 \le \lambda_k^2 - \frac{2\lambda_k}{||g_k||} \varepsilon \le \frac{\varepsilon \lambda_k}{\Gamma} - \frac{2\varepsilon \lambda_k}{\Gamma} = -\frac{\varepsilon \lambda_k}{\Gamma}.$$

So
$$||x_{\ell} - x_*||^2 - ||x_{K_2} - x_*||^2 \le -\frac{\varepsilon}{\Gamma} \sum_{K_2}^{\ell-1} \lambda_k$$
.
So $||x_{\ell} - x_*||^2 \le ||x_{K_2} - x_*||^2 - \frac{\varepsilon}{\Gamma} \sum_{K_2}^{\ell-1} \lambda_k \to -\infty$ as $\ell \to \infty$..

We have obtained our contradiction and $\liminf f_k = f_*$ as claimed. \square

To examine the complexity of the subgradient method, assume $f: \mathbb{R}^n \to \mathbb{R}$ is convex and we want to minimize f on B(0,R). Assume max $\{f(x): x \in B(0,R)\}$ —min $\{f(x): x \in B(0,R)\}$ \leq 1

We will derive an algorithm with complexity $O(\varepsilon^{-2})$. Note that this is independent of n! This does not contradict our earlier lower bound of $\Omega\left(n\ln\frac{1}{\varepsilon}\right)$ because ε is sufficiently large.

This bound is valid for all $\varepsilon < 1/2$ for $G = [-1, +1]^n$ but it is only valid for $\varepsilon < \frac{1}{n^3}$ for G = B(0, R).

The algorithm uses step size $\lambda_k = \varepsilon R$.

Algorithm

Start with $x_0 = 0$.

At iteration k, if $||x_k|| > R$, choose $v_k = x_k$; otherwise compute a subgradient g_k of f at x_k , and stop if $g_k = 0$. Otherwise $v_k = g_k$.

Set
$$x_{k+1} := x_k - \varepsilon R \frac{v_k}{\|v_k\|}$$
.

Theorem 3 Using this algorithm, $\min_{0 \le k \le \ell} f(x_k) \le \min \{ f(x) : x \in B(0,R) \} + \varepsilon$ within $\frac{1}{\varepsilon^2}$ iterations.

Proof of the theorem to follow in Lecture 21.

OR 631: Mathematical Programming II. Spring 2014.

Homework Set 4. Due: Tuesday April 29.

1. Suppose we wish to solve the problem

$$\min f(x), \quad h_i(x) \le 0, i = 1, \dots, m, \quad x \in B(0, R),$$

and suppose that f is convex and has range at most 1 on B(0,R), that each h_i is convex and is at most 1 on B(0,R), and that the problem has an optimal solution x_* .

Consider the following algorithm, given $\epsilon > 0$. Start with $x_0 = 0$. At iteration k, if $||x_k|| > R$, choose $v_k = x_k$. If for some i, $h_i(x_k) > \epsilon$, choose any such i and set v_k to be a subgradient of h_i at x_k . If $h_i(x_k) \leq \epsilon$ for all i, set v_k to be a subgradient of f at x_k . If $v_k = 0$, stop; otherwise set $x_{k+1} = x_k - \frac{\epsilon R}{||v_k||} v_k$.

Show that within ϵ^{-2} iterations, the method will give an x_k with $h_i(x_k) \leq \epsilon$ for all i and $f(x_k) \leq f(x_*) + \epsilon$.

2. Assume that f is a twice continuously differentiable convex function on \mathbb{R}^n and that for every x, the eigenvalues of $\nabla^2 f(x)$ are bounded between $\ell > 0$ and $L < \infty$. Show that, for every $x, y \in \mathbb{R}^n$,

$$f(x) + \nabla f(x)^T (y - x) + \frac{\ell}{2} ||y - x||^2 \le f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

3. a) Suppose that g is a convex function on \mathbb{R}^n . Show that, for every $z \in \mathbb{R}^n$ and L > 0, the problem

$$(P(z))$$
 $\min g(x) + \frac{L}{2}||x - z||^2$

has an optimal solution.

b) Assume that, for any $z \in \mathbb{R}^n$, you can solve (P(z)) efficiently. Show how you can solve the problem

$$\min f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{L}{2} ||x - x_k||^2 + g(x)$$

efficiently. What is the solution if $g \equiv 0$?

c) Find the solution to (P(z)) explicitly if $g(x) := ||x||_1$.