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1 Subgradient Method

Let f : R®™ — R be a convex function. Recall that the subdifferential of f is the set of
subgradients:

Of (@) :={geR" : f(y)>f(x)+g" (y—x), VyeR"}.

Assume that at each x, we can compute a single subgradient g = ¢ (z), e.g., as in the
Lagrangian relaxation approach to hard problems.

While the subdifferential tells us a lot about the behavior of f around z, a single subgradient
doesn’t reveal very much.

Consider the directional derivative of f at x in direction d:

{f(a:mi)—f(as) :zq@,d?”}_

Note that because ¢ is nondecreasing in A, the limit exists and f’ (x;d) = /i\n%{q (x,d,\)}
>

! (e — 1

Note also that q (z,d,\) > g7d ¥V g € Of (z).

Hence, f'(z;d) > g¥d V g € 0f (x), so that f'(z;d) > max{g'd: g€ df (z)}
In fact, it can be shown (see Borwein and Lewis, “Convex Analysis and Nonlinear Opti-
mization: Theory and Examples”) that

f'(z;d) = max {g"d: g € Of (x)}.

So in particular, if g € df (x) and g # 0, then g is an ascent direction for f at z since
f'(x;9) > gTg > 0. However, —g may not be a descent direction:
f(z;—g) = max{(—g)"h : hedf(z)} > —g"g < 0 might be positive. See Figure 2 of
Lecture 19.

Theorem 1 z is a global minimizer of f if and only if 0 € Of (z).
Proof:

The “if” component is trivial through the definition of a subgradient.

We prove the “only if” portion through contradiction, “constructively.” Suppose 0 is not
in the closed convex set df (z). Then there is some 0 # d € R" such that 07d = 0 >

max{g'd : g€ df(x)} = [ (v;d).

So z is not even a local minimizer since d is a descent direction. 0O



Corollary 1 If0 ¢ Of (z), then d = —argmin{||g|| : g € Of (x)} is a descent direction for
f at x.

2 Two Alternatives

1. Try to find more points in df (z) until we can get a descent direction:
(a) Bundle methods (Lemaréchal, 1970s),
(b) Gradient Sampling Methods (Burke, Lewis, Overton).

2. Move in the direction —g even if it is not a descent direction.

We will show how to choose a very general step size rule that is independent of f.

General Subgradient Algorithm (N.Z. Shor, 1960s)

Choose zg € R™ and a sequence {\;} of positive scalars. At iteration k, compute a subgradient
Ik

Theorem 2 (B.T. Polyak, 1967) Suppose X, := {xz. € R" : f(x) > f(x.) ¥V x € R"} # 0.
Then, as long as Z/\k = 00 and Z)\z < oo, for any xo € R”, liminfy f () = min f (R")

k=0 k=0
for {xy} generated by the subgradient method.

g of f at zj. Stop if g = 0. Otherwise, set z511 := xp — A\

Proof: Choose any z, € X, and look at ||z — x| before and after a step.
lzer = @ull® = llze = 2ll” = Nzl = lael® = 208, 120 + 2277z,

= [lzres — 2all” + 2 (pan — @) (20 — @)

g T

= )\2 — 2)\k ($k — a:*) .
: 195
By the subgradient inequality, g (v, — z.) > fi — f« > 0, where f, := f (z,).
-1
So [l — . — - .| < 304
k=0

Hence, {z,} lies in some bounded set since Z A} < 0o. So all ||g¢||’s are uniformly bounded
k=0
(true but not obvious: proof omitted).
So ||gkl| < TV k for some T'.

Now assume fy > f.+¢e, forsomee >0, Vk > K;. Also, A\, | 0s0 A\, < %‘v’k: > Ky > K.
Then for k > Ko,
2 2)\k < 8)\k _ 26)\k . _&.

2 2
| = ok — | < A2 = 2Dk < S -



-1
g
So [lze — z.|* — [lak, — z.]* < _fz/\k'
Ky

-1
2 2 €
So ||z — zi||” < ok, — x||” — fz)‘k — —o0 as { — ..
K>
We have obtained our contradiction and liminf f; = f. as claimed. O

To examine the complexity of the subgradient method, assume f : R” — R is convex and we
want to minimize f on B (0, R). Assume max {f (z) : x € B(0,R)}—min{f (z):x € B(0,R)} <
1.

We will derive an algorithm with complexity O (¢72). Note that this is independent of n!

1
This does not contradict our earlier lower bound of €2 <n In —) because ¢ is sufficiently large.
£

1
This bound is valid for all ¢ < 1/2 for G = [—1,+1]" but it is only valid for ¢ < — for

n3
G = B(0,R).
The algorithm uses step size \y = eR.

Algorithm

Start with z¢ = 0.
At iteration k, if ||zg|| > R, choose v, = x; otherwise compute a subgradient g of f at zy,
and stop if g = 0. Otherwise vy = gx.
Vg
Set xpy1 :=xp —eR—.
o]

Theorem 3 Using this algorithm, Orgkigef (zx) < min{f (z): 2 € B(0, R)} + ¢ within % iter-

2

ations.

Proof of the theorem to follow in Lecture 21.



