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1 Subgradient Method

Let f : Rn → R be a convex function. Recall that the subdifferential of f is the set of
subgradients:

∂f (x) :=
{
g ∈ Rn : f (y) ≥ f (x) + gT (y − x) , ∀ y ∈ Rn

}
.

Assume that at each x, we can compute a single subgradient g = g (x), e.g., as in the
Lagrangian relaxation approach to hard problems.

While the subdifferential tells us a lot about the behavior of f around x, a single subgradient
doesn’t reveal very much.

Consider the directional derivative of f at x in direction d:

f ′ (x; d) := lim
λ↓0

{
f (x + λd)− f (x)

λ
=: q (x, d, λ)

}
.

Note that because q is nondecreasing in λ, the limit exists and f ′ (x; d) = inf
λ>0
{q (x, d, λ)}

Note also that q (x, d, λ) ≥ gT d ∀ g ∈ ∂f (x).

Hence, f ′ (x; d) ≥ gT d ∀ g ∈ ∂f (x), so that f ′ (x; d) ≥ max {gT d : g ∈ ∂f (x)}
In fact, it can be shown (see Borwein and Lewis, “Convex Analysis and Nonlinear Opti-

mization: Theory and Examples”) that

f ′ (x; d) = max {gT d : g ∈ ∂f (x)}.

So in particular, if g ∈ ∂f (x) and g 6= 0, then g is an ascent direction for f at x since
f ′ (x; g) ≥ gT g > 0. However, −g may not be a descent direction:
f ′ (x;−g) = max {(−g)T h : h ∈ ∂f (x)} ≥ −gT g < 0 might be positive. See Figure 2 of
Lecture 19.

Theorem 1 x is a global minimizer of f if and only if 0 ∈ ∂f (x).

Proof:

The “if” component is trivial through the definition of a subgradient.

We prove the “only if” portion through contradiction, “constructively.” Suppose 0 is not
in the closed convex set ∂f (x). Then there is some 0 6= d ∈ Rn such that 0T d = 0 >
max {gT d : g ∈ ∂f (x)} = f ′ (x; d) .

So x is not even a local minimizer since d is a descent direction. ut
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Corollary 1 If 0 /∈ ∂f (x) , then d = − arg min {‖g‖ : g ∈ ∂f (x)} is a descent direction for
f at x.

2 Two Alternatives

1. Try to find more points in ∂f (x) until we can get a descent direction:

(a) Bundle methods (Lemaréchal, 1970s),

(b) Gradient Sampling Methods (Burke, Lewis, Overton).

2. Move in the direction −g even if it is not a descent direction.

We will show how to choose a very general step size rule that is independent of f .

General Subgradient Algorithm (N.Z. Shor, 1960s)

Choose x0 ∈ Rn and a sequence {λk} of positive scalars. At iteration k, compute a subgradient

gk of f at xk. Stop if gk = 0. Otherwise, set xk+1 := xk − λk
gk

‖gk‖
.

Theorem 2 (B.T. Polyak, 1967) Suppose X∗ := {x∗ ∈ Rn : f (x) ≥ f (x∗) ∀ x ∈ Rn} 6= ∅.

Then, as long as
∞∑

k=0

λk = ∞ and
∞∑

k=0

λ2
k < ∞, for any x0 ∈ Rn, lim infk f (xk) = min f (Rn)

for {xk} generated by the subgradient method.

Proof: Choose any x∗ ∈ X∗ and look at ‖xk − x∗‖ before and after a step.

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 = ‖xk+1‖2 − ‖xk‖2 − 2xT
k+1x∗ + 2xT

k x∗

= ‖xk+1 − xk‖2 + 2 (xk+1 − xk)
T (xk − x∗)

= λ2
k − 2λk

gk

‖gk‖
T

(xk − x∗) .

By the subgradient inequality, gT
k (xk − x∗) ≥ fk − f∗ ≥ 0, where f• := f (x•).

So ‖x` − x∗‖2 − ‖x0 − x∗‖2 ≤
`−1∑
k=0

λ2
k.

Hence, {x`} lies in some bounded set since
∞∑

k=0

λ2
k < ∞. So all ‖g`‖’s are uniformly bounded

(true but not obvious: proof omitted).
So ‖gk‖ ≤ Γ ∀ k for some Γ.

Now assume fk ≥ f∗+ε, for some ε > 0, ∀ k ≥ K1. Also, λk ↓ 0 so λk ≤
ε

Γ
∀ k ≥ K2 ≥ K1.

Then for k ≥ K2,

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 ≤ λ2
k −

2λk

‖gk‖
ε ≤ ελk

Γ
− 2ελk

Γ
= −ελk

Γ
.
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So ‖x` − x∗‖2 − ‖xK2 − x∗‖2 ≤ − ε

Γ

`−1∑
K2

λk.

So ‖x` − x∗‖2 ≤ ‖xK2 − x∗‖2 − ε

Γ

`−1∑
K2

λk → −∞ as ` →∞..

We have obtained our contradiction and lim inf fk = f∗ as claimed. ut

To examine the complexity of the subgradient method, assume f : Rn → R is convex and we
want to minimize f on B (0, R). Assume max {f (x) : x ∈ B (0, R)}−min {f (x) : x ∈ B (0, R)} ≤
1.

We will derive an algorithm with complexity O (ε−2). Note that this is independent of n!

This does not contradict our earlier lower bound of Ω

(
n ln

1

ε

)
because ε is sufficiently large.

This bound is valid for all ε < 1/2 for G = [−1, +1]n but it is only valid for ε <
1

n3
for

G = B (0, R).
The algorithm uses step size λk = εR.

Algorithm

Start with x0 = 0.
At iteration k, if ‖xk‖ > R, choose vk = xk; otherwise compute a subgradient gk of f at xk,
and stop if gk = 0. Otherwise vk = gk.

Set xk+1 := xk − εR
vk

‖vk‖
.

Theorem 3 Using this algorithm, min
0≤k≤`

f (xk) ≤ min {f (x) : x ∈ B(0, R)} + ε within 1
ε2 iter-

ations.

Proof of the theorem to follow in Lecture 21.
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