1 Subgradient Method

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Recall that the subdifferential of f is the set of subgradients:

$$
\partial f(x):=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+g^{T}(y-x), \forall y \in \mathbb{R}^{n}\right\}
$$

Assume that at each x, we can compute a single subgradient $g=g(x)$, e.g., as in the Lagrangian relaxation approach to hard problems.

While the subdifferential tells us a lot about the behavior of f around x, a single subgradient doesn't reveal very much.

Consider the directional derivative of f at x in direction d :

$$
f^{\prime}(x ; d):=\lim _{\lambda \downarrow 0}\left\{\frac{f(x+\lambda d)-f(x)}{\lambda}=: q(x, d, \lambda)\right\} .
$$

Note that because q is nondecreasing in λ, the limit exists and $f^{\prime}(x ; d)=\inf _{\lambda>0}\{q(x, d, \lambda)\}$

Note also that $q(x, d, \lambda) \geq g^{T} d \forall g \in \partial f(x)$.
Hence, $f^{\prime}(x ; d) \geq g^{T} d \forall g \in \partial f(x)$, so that $f^{\prime}(x ; d) \geq \max \left\{g^{T} d: g \in \partial f(x)\right\}$
In fact, it can be shown (see Borwein and Lewis, "Convex Analysis and Nonlinear Optimization: Theory and Examples") that

$$
f^{\prime}(x ; d)=\max \left\{g^{T} d: g \in \partial f(x)\right\} .
$$

So in particular, if $g \in \partial f(x)$ and $g \neq 0$, then g is an ascent direction for f at x since $f^{\prime}(x ; g) \geq g^{T} g>0$. However, $-g$ may not be a descent direction:
$f^{\prime}(x ;-g)=\max \left\{(-g)^{T} h: h \in \partial f(x)\right\} \geq-g^{T} g<0$ might be positive. See Figure 2 of Lecture 19.

Theorem $1 x$ is a global minimizer of f if and only if $0 \in \partial f(x)$.

Proof:

The "if" component is trivial through the definition of a subgradient.
We prove the "only if" portion through contradiction, "constructively." Suppose 0 is not in the closed convex set $\partial f(x)$. Then there is some $0 \neq d \in \mathbb{R}^{n}$ such that $0^{T} d=0>$ $\max \left\{g^{T} d: g \in \partial f(x)\right\}=f^{\prime}(x ; d)$.

So x is not even a local minimizer since d is a descent direction.

Corollary 1 If $0 \notin \partial f(x)$, then $d=-\arg \min \{\|g\|: g \in \partial f(x)\}$ is a descent direction for f at x.

2 Two Alternatives

1. Try to find more points in $\partial f(x)$ until we can get a descent direction:
(a) Bundle methods (Lemaréchal, 1970s),
(b) Gradient Sampling Methods (Burke, Lewis, Overton).
2. Move in the direction $-g$ even if it is not a descent direction.

We will show how to choose a very general step size rule that is independent of f.

General Subgradient Algorithm (N.Z. Shor, 1960s)

Choose $x_{0} \in \mathbb{R}^{n}$ and a sequence $\left\{\lambda_{k}\right\}$ of positive scalars. At iteration k, compute a subgradient g_{k} of f at x_{k}. Stop if $g_{k}=0$. Otherwise, set $x_{k+1}:=x_{k}-\lambda_{k} \frac{g_{k}}{\left\|g_{k}\right\|}$.

Theorem 2 (B.T. Polyak, 1967) Suppose $X_{*}:=\left\{x_{*} \in \mathbb{R}^{n} \quad: \quad f(x) \geq f\left(x_{*}\right) \forall x \in \mathbb{R}^{n}\right\} \neq \emptyset$. Then, as long as $\sum_{k=0}^{\infty} \lambda_{k}=\infty$ and $\sum_{k=0}^{\infty} \lambda_{k}^{2}<\infty$, for any $x_{0} \in \mathbb{R}^{n}$, $\liminf _{k} f\left(x_{k}\right)=\min f\left(\mathbb{R}^{n}\right)$ for $\left\{x_{k}\right\}$ generated by the subgradient method.

Proof: Choose any $x_{*} \in X_{*}$ and look at $\left\|x_{k}-x_{*}\right\|$ before and after a step.

$$
\begin{gathered}
\left\|x_{k+1}-x_{*}\right\|^{2}-\left\|x_{k}-x_{*}\right\|^{2}=\left\|x_{k+1}\right\|^{2}-\left\|x_{k}\right\|^{2}-2 x_{k+1}^{T} x_{*}+2 x_{k}^{T} x_{*} \\
=\left\|x_{k+1}-x_{k}\right\|^{2}+2\left(x_{k+1}-x_{k}\right)^{T}\left(x_{k}-x_{*}\right) \\
=\lambda_{k}^{2}-2 \lambda_{k}{\frac{g_{k}}{\left\|g_{k}\right\|}}^{T}\left(x_{k}-x_{*}\right) .
\end{gathered}
$$

By the subgradient inequality, $g_{k}^{T}\left(x_{k}-x_{*}\right) \geq f_{k}-f_{*} \geq 0$, where $f_{\bullet}:=f\left(x_{\bullet}\right)$.
So $\left\|x_{\ell}-x_{*}\right\|^{2}-\left\|x_{0}-x_{*}\right\|^{2} \leq \sum_{k=0}^{\ell-1} \lambda_{k}^{2}$.
Hence, $\left\{x_{\ell}\right\}$ lies in some bounded set since $\sum_{k=0}^{\infty} \lambda_{k}^{2}<\infty$. So all $\left\|g_{\ell}\right\|$'s are uniformly bounded (true but not obvious: proof omitted).

So $\left\|g_{k}\right\| \leq \Gamma \forall k$ for some Γ.
Now assume $f_{k} \geq f_{*}+\varepsilon$, for some $\varepsilon>0, \forall k \geq K_{1}$. Also, $\lambda_{k} \downarrow 0$ so $\lambda_{k} \leq \frac{\varepsilon}{\Gamma} \forall k \geq K_{2} \geq K_{1}$. Then for $k \geq K_{2}$,

$$
\left\|x_{k+1}-x_{*}\right\|^{2}-\left\|x_{k}-x_{*}\right\|^{2} \leq \lambda_{k}^{2}-\frac{2 \lambda_{k}}{\left\|g_{k}\right\|} \varepsilon \leq \frac{\varepsilon \lambda_{k}}{\Gamma}-\frac{2 \varepsilon \lambda_{k}}{\Gamma}=-\frac{\varepsilon \lambda_{k}}{\Gamma} .
$$

So $\left\|x_{\ell}-x_{*}\right\|^{2}-\left\|x_{K_{2}}-x_{*}\right\|^{2} \leq-\frac{\varepsilon}{\Gamma} \sum_{K_{2}}^{\ell-1} \lambda_{k}$.
So $\left\|x_{\ell}-x_{*}\right\|^{2} \leq\left\|x_{K_{2}}-x_{*}\right\|^{2}-\frac{\varepsilon}{\Gamma} \sum_{K_{2}}^{\ell-1} \lambda_{k} \rightarrow-\infty$ as $\ell \rightarrow \infty$..
We have obtained our contradiction and $\lim \inf f_{k}=f_{*}$ as claimed.
To examine the complexity of the subgradient method, assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and we want to minimize f on $B(0, R)$. Assume max $\{f(x): x \in B(0, R)\}-\min \{f(x): x \in B(0, R)\} \leq$ 1.

We will derive an algorithm with complexity $O\left(\varepsilon^{-2}\right)$. Note that this is independent of n ! This does not contradict our earlier lower bound of $\Omega\left(n \ln \frac{1}{\varepsilon}\right)$ because ε is sufficiently large. This bound is valid for all $\varepsilon<1 / 2$ for $G=[-1,+1]^{n}$ but it is only valid for $\varepsilon<\frac{1}{n^{3}}$ for $G=B(0, R)$.

The algorithm uses step size $\lambda_{k}=\varepsilon R$.

Algorithm

Start with $x_{0}=0$.
At iteration k, if $\left\|x_{k}\right\|>R$, choose $v_{k}=x_{k}$; otherwise compute a subgradient g_{k} of f at x_{k}, and stop if $g_{k}=0$. Otherwise $v_{k}=g_{k}$.
Set $x_{k+1}:=x_{k}-\varepsilon R \frac{v_{k}}{\left\|v_{k}\right\|}$.
Theorem 3 Using this algorithm, $\min _{0 \leq k \leq \ell} f\left(x_{k}\right) \leq \min \{f(x): x \in B(0, R)\}+\varepsilon$ within $\frac{1}{\varepsilon^{2}}$ iterations.

Proof of the theorem to follow in Lecture 21.

