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Last time, we introduced the Method of Centers of Gravity (MCG) and the Ellipsoid Method
of Yudin and Nemirovski (1976) and Shor (1977), which is a simple modification of MCG.

We represent an ellipsoid by

E(B, y) := {x ∈ IRn : (x− y)>B−1(x− y) ≤ 1},

where y ∈ IRn, and B = B> ∈ IRn×n is symmetric positive definite.

Observe that C = [−1, 1]n ⊆ E(nI, 0) =
{
x ∈ IRn : x> 1

n
Ix ≤ 1

}
= {x ∈ IRn : ‖x‖2 ≤

√
n}

(Figure 1). Hence, if E0 = E(nI, 0), then (E0, ∗) is a localizer and vol(E0) ≤ (2
√
n)n.

Figure 1: E(nI, 0) =
{
x ∈ IRn : x> 1

n
Ix ≤ 1

}
= {x ∈ IRn : ‖x‖2 ≤

√
n}.

The Ellipsoid Method Algorithm:

• Initialize with E0 = E(nI, 0), z = ∗.

• At iteration k, we are given a localizer (Ek, zk), where Ek = E(Bk, xk) and xk is the center
of gravity of Ek. Call the oracle at xk.

• If xk /∈ G ∩ int(C), the oracle returns a separating hyperplane G ⊆ {x : v>k x ≤ v>k xk}.
Set zk+1 := zk, ak := vk.

• If xk ∈ G ∩ int(C), the oracle returns f(xk), g(xk) ∈ ∂f(xk).
Set zk+1 := argmin{f(xk), f(zk)}, and ak := g(xk).

• Set Ek+1 to be the minimum volume ellipsoid containing E
1/2
k := {x ∈ Ek : a>k x ≤ a>k xk}

(Figure 2).

1



• Stop if vol(Ek+1) < δn and zk+1 = ∗ (then G = ∅) or if zk+1 ∈ G and vol(Ek+1) < (εδ)n

(then ε(zk+1, f, G) < ε).

Figure 2: Ellipsoid Method

Proposition 1. For every k, (Ek, zk) is a localizer of (f,G).

Proof. The proof is exactly analogous to the proof of the Method of Centers of Gravity from
last lecture (i.e., Proposition 2). ut
Proposition 2. Ek+1 = E(Bk+1, xk+1), where

xk+1 = xk − τ
Bkak√
a>k Bkak

, Bk+1 = δ

(
Bk − σ

Bkaka
>
k Bk

a>k Bkak

)
,

with τ = 1
n+ 1 , δ = n2

n2 − 1
, and σ = 2

n+ 1 .

Note that we are always assuming that n > 1. In fact, we will prove a stronger proposition for
which Proposition 2 is a special case (α = 0).

Proposition 3. Let E = E(B, y) and − 1
n
≤ α < 1. Then the minimum volume ellipsoid

containing Eα = {x ∈ E : a>x ≤ a>y − α
√
a>Ba} is E+ := E(B+, y+), where

B+ = δ

(
B − σBaa

>B

a>Ba

)
and y+ = y − τ Ba√

a>Ba
.

Here, τ = 1 + nα
n+ 1 , δ =

(1− α2)n2

n2 − 1
, and σ =

2(1 + nα)
(n+ 1)(1 + α)

. Moreover,

vol(E+)

vol(E)
=

n

n+ 1

(
n2

n2 − 1

)n−1
2

(1− α)(1− α2)
n−1
2 .

This is at most exp
(
− 1

2(n+1)

)
if α ≥ 0.
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Figure 3: Minimum Volume Ellipsoid. If α ≤ − 1
n
, E+ = E.

We’ll prove Proposition 3 next time using the following Lemmata.

Lemma 1. Let B = B> ∈ IRn×n be symmetric positive definite. Then:

(a) B has a unique symmetric positive definite square root, denoted by B1/2, satisfying
B1/2B1/2 = B.

(b) E(B, y) = {y +B1/2w : ‖w‖2 ≤ 1}.

(c) vol(E(B, y)) =
√

det(B) vol(unit ball).

(d) For any 0 6= a ∈ IRn, a>x is maximized/minimized over E(B, y) at y± Ba√
a>Ba

with optimal

values a>y ±
√
a>Ba.

Proof. a

(a) Write B = QDQ>, with Q orthogonal (the columns of Q are the eigenvectors of B) and D
diagonal (the diagonal entries are the eigenvalues of B). Then, set D1/2 to be the diagonal
matrix containing the positive square roots of the eigenvalues and set B1/2 = QD1/2Q>.
Check that B = B1/2B1/2. We will not prove uniqueness here.

(b) Write B−1/2 = (B1/2)−1 = (B−1)1/2. If x = y +B1/2w, ‖w‖ ≤ 1, then

(x− y)>B−1(x− y) = w>B1/2(B1/2B1/2)−1B1/2w = w>w ≤ 1.

Conversely, if (x − y)>B−1(x − y) = (x − y)>B−1/2B−1/2(x − y) ≤ 1. Define w :=
B−1/2(x− y) and note that

‖w‖ = ‖B−1/2(x− y)‖ ≤ 1.
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(c) vol(E(B, y)) = vol({y+B1/2w : ‖w‖ ≤ 1} = detB1/2 vol(unit ball) =
√

det(B) vol(unit ball).

(d) Note that

max{a>x : x ∈ E(B, y)} = max{a>(y +B1/2w) : ‖w‖ ≤ 1}
= a>y + max{a>B1/2w : ‖w‖ ≤ 1}
(i)
= a>y + ‖B1/2a‖,

where (i) follows by setting w = B1/2a
‖B1/2a‖ = B1/2a√

a>Ba
, whence the result for maximizing.

Similarly for minimizing. This gives both the optimal value and the optimizing point.
ut

Lemma 2. (Sherman - Morrison - Woodbury) Let A ∈ IRn×n be invertible and U, V ∈ IRn×k,
where k < n. Then

(a) det(A+ UV >) = det(A) det(Ik + V >A−1U).

(b) A+ UV > is invertible if and only if Ik + V >A−1U is invertible.

(c) If this holds,

(A+ UV >)−1 = A−1 + A−1U(Ik + V >A−1U)−1V >A−1︸ ︷︷ ︸
rank≤k

.

Proof. a

(a) Consider [
A U
−V > Ik

]
=

[
A+ UV > U

0 Ik

] [
In 0
−V > Ik

]
=

[
In 0

−V >A−1 Ik

] [
A U
0 Ik + V >A−1U

]
.

By taking determinants of the two RHS, we conclude that det(A+UV >) = det(A) det(Ik+
V >A−1U).

(b) Follows trivially from (a).

(c) Define B := Ik + V >A−1U . Then from the equations above,[
A+ UV > U

0 Ik

]
=

[
In 0

−V >A−1 Ik

] [
A U
0 B

] [
In 0
−V > Ik

]−1
.

By inverting both sides of the equation, we have,[
(A+ UV >)−1 −(A+ UV >)−1U

0 Ik

]
=

[
In 0
−V > Ik

] [
A−1 −A−1UB−1

0 B−1

] [
In 0

V >A−1 Ik

]
.

The top left hand block gives the desired result.
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ut

Next time, we will prove Proposition 3. We will first show that E+ contains Eα and then sketch
the proof of its minimality. Define a := a√

a>Ba
and note that a>Ba = 1. Therefore, by Lemma

1, −1 ≤ a>(x− y) ≤ 1, for all x ∈ E. Then,

a>x ≤ a>y − α
√
a>Ba is equivalent to

a>x ≤ a>y − α.

Therefore, x ∈ Eα if and only if (x − y)>B−1(x − y) ≤ 1 and −1 ≤ a>(x − y) ≤ −α or
equivalently, (a>(x− y) + α)(a>(x− y) + 1) ≤ 0. Thus we have two quadratics.
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