Last time, we introduced the Method of Centers of Gravity (MCG) and the Ellipsoid Method of Yudin and Nemirovski (1976) and Shor (1977), which is a simple modification of MCG.

We represent an ellipsoid by

$$E(B, y) := \{ x \in \mathbb{R}^n : (x - y)^\top B^{-1}(x - y) \le 1 \},\$$

where $y \in \mathbb{R}^n$, and $B = B^{\top} \in \mathbb{R}^{n \times n}$ is symmetric positive definite.

Observe that $C = [-1, 1]^n \subseteq E(nI, 0) = \{x \in \mathbb{R}^n : x^{\top} \frac{1}{n} Ix \leq 1\} = \{x \in \mathbb{R}^n : ||x||_2 \leq \sqrt{n}\}$ (Figure 1). Hence, if $E_0 = E(nI, 0)$, then $(E_0, *)$ is a localizer and $vol(E_0) \leq (2\sqrt{n})^n$.

Figure 1: $E(nI, 0) = \left\{ x \in \mathbb{R}^n : x^{\top} \frac{1}{n} Ix \le 1 \right\} = \left\{ x \in \mathbb{R}^n : ||x||_2 \le \sqrt{n} \right\}.$

The Ellipsoid Method Algorithm:

- Initialize with $E_0 = E(nI, 0), z = *.$
- At iteration k, we are given a localizer (E_k, z_k) , where $E_k = E(B_k, x_k)$ and x_k is the center of gravity of E_k . Call the oracle at x_k .
- If $x_k \notin G \cap \operatorname{int}(C)$, the oracle returns a separating hyperplane $G \subseteq \{x : v_k^\top x \leq v_k^\top x_k\}$. Set $z_{k+1} := z_k, \ a_k := v_k$.
- If $x_k \in G \cap \operatorname{int}(C)$, the oracle returns $f(x_k)$, $g(x_k) \in \partial f(x_k)$. Set $z_{k+1} := \operatorname{argmin}\{f(x_k), f(z_k)\}$, and $a_k := g(x_k)$.
- Set E_{k+1} to be the minimum volume ellipsoid containing $E_k^{1/2} := \{x \in E_k : a_k^\top x \le a_k^\top x_k\}$ (Figure 2).

• Stop if $\operatorname{vol}(E_{k+1}) < \delta^n$ and $z_{k+1} = *$ (then $G = \emptyset$) or if $z_{k+1} \in G$ and $\operatorname{vol}(E_{k+1}) < (\varepsilon\delta)^n$ (then $\epsilon(z_{k+1}, f, G) < \epsilon$).

Figure 2: Ellipsoid Method

Proposition 1. For every k, (E_k, z_k) is a localizer of (f, G).

Proof. The proof is exactly analogous to the proof of the Method of Centers of Gravity from last lecture (i.e., Proposition 2). \Box

Proposition 2. $E_{k+1} = E(B_{k+1}, x_{k+1})$, where

$$x_{k+1} = x_k - \tau \frac{B_k a_k}{\sqrt{a_k^\top B_k a_k}}, \qquad B_{k+1} = \delta \left(B_k - \sigma \frac{B_k a_k a_k^\top B_k}{a_k^\top B_k a_k} \right),$$

$$\overline{1}, \ \delta = \frac{n^2}{n^2 - 1}, \text{ and } \sigma = \frac{2}{n+1}.$$

with $\tau = \frac{1}{n+1}$, $\delta = \frac{n^2}{n^2 - 1}$, and $\sigma = \frac{2}{n+1}$. Note that we are always assuming that n > 1. In fact, we

Note that we are always assuming that n > 1. In fact, we will prove a stronger proposition for which Proposition 2 is a special case ($\alpha = 0$).

Proposition 3. Let E = E(B, y) and $-\frac{1}{n} \leq \alpha < 1$. Then the minimum volume ellipsoid containing $E_{\alpha} = \{x \in E : a^{\top}x \leq a^{\top}y - \alpha\sqrt{a^{\top}Ba}\}$ is $E_{+} := E(B_{+}, y_{+})$, where

$$B_{+} = \delta \left(B - \sigma \frac{Baa^{\top}B}{a^{\top}Ba} \right) \quad \text{and} \quad y_{+} = y - \tau \frac{Ba}{\sqrt{a^{\top}Ba}}.$$

Here, $\tau = \frac{1+n\alpha}{n+1}$, $\delta = \frac{(1-\alpha^{2})n^{2}}{n^{2}-1}$, and $\sigma = \frac{2(1+n\alpha)}{(n+1)(1+\alpha)}.$ Moreover,
 $\frac{\operatorname{vol}(E_{+})}{\operatorname{vol}(E)} = \frac{n}{n+1} \left(\frac{n^{2}}{n^{2}-1} \right)^{\frac{n-1}{2}} (1-\alpha)(1-\alpha^{2})^{\frac{n-1}{2}}.$

This is at most $\exp\left(-\frac{1}{2(n+1)}\right)$ if $\alpha \ge 0$.

Figure 3: Minimum Volume Ellipsoid. If $\alpha \leq -\frac{1}{n}$, $E_{+} = E$.

We'll prove Proposition 3 next time using the following Lemmata.

Lemma 1. Let $B = B^{\top} \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Then:

(a) B has a unique symmetric positive definite square root, denoted by $B^{1/2}$, satisfying $B^{1/2}B^{1/2} = B$.

(b)
$$E(B, y) = \{y + B^{1/2}w : ||w||_2 \le 1\}.$$

- (c) $\operatorname{vol}(E(B, y)) = \sqrt{\det(B)}$ vol(unit ball).
- (d) For any $0 \neq a \in \mathbb{R}^n$, $a^{\top}x$ is maximized/minimized over E(B, y) at $y \pm \frac{Ba}{\sqrt{a^{\top}Ba}}$ with optimal values $a^{\top}y \pm \sqrt{a^{\top}Ba}$.

Proof.

(a) Write $B = QDQ^{\top}$, with Q orthogonal (the columns of Q are the eigenvectors of B) and D diagonal (the diagonal entries are the eigenvalues of B). Then, set $D^{1/2}$ to be the diagonal matrix containing the positive square roots of the eigenvalues and set $B^{1/2} = QD^{1/2}Q^{\top}$. Check that $B = B^{1/2}B^{1/2}$. We will not prove uniqueness here.

(b) Write
$$B^{-1/2} = (B^{1/2})^{-1} = (B^{-1})^{1/2}$$
. If $x = y + B^{1/2}w$, $||w|| \le 1$, then
 $(x - y)^{\top}B^{-1}(x - y) = w^{\top}B^{1/2}(B^{1/2}B^{1/2})^{-1}B^{1/2}w = w^{\top}w \le 1$.

Conversely, if $(x - y)^{\top} B^{-1}(x - y) = (x - y)^{\top} B^{-1/2} B^{-1/2}(x - y) \leq 1$. Define $w := B^{-1/2}(x - y)$ and note that

$$||w|| = ||B^{-1/2}(x-y)|| \le 1$$

(c) $\operatorname{vol}(E(B,y)) = \operatorname{vol}(\{y + B^{1/2}w : \|w\| \le 1\} = \det B^{1/2} \operatorname{vol}(\operatorname{unit ball}) = \sqrt{\det(B)} \operatorname{vol}(\operatorname{unit ball}).$

(d) Note that

$$\max\{a^{\top}x : x \in E(B, y)\} = \max\{a^{\top}(y + B^{1/2}w) : \|w\| \le 1\}$$
$$= a^{\top}y + \max\{a^{\top}B^{1/2}w : \|w\| \le 1\}$$
$$\stackrel{(i)}{=} a^{\top}y + \|B^{1/2}a\|,$$

where (i) follows by setting $w = \frac{B^{1/2}a}{\|B^{1/2}a\|} = \frac{B^{1/2}a}{\sqrt{a^{T}Ba}}$, whence the result for maximizing. Similarly for minimizing. This gives both the optimal value and the optimizing point.

Lemma 2. (Sherman - Morrison - Woodbury) Let $A \in \mathbb{R}^{n \times n}$ be invertible and $U, V \in \mathbb{R}^{n \times k}$, where k < n. Then

- (a) $\det(A + UV^{\top}) = \det(A) \det(I_k + V^{\top}A^{-1}U).$
- (b) $A + UV^{\top}$ is invertible if and only if $I_k + V^{\top}A^{-1}U$ is invertible.
- (c) If this holds,

$$(A + UV^{\top})^{-1} = A^{-1} + \underbrace{A^{-1}U(I_k + V^{\top}A^{-1}U)^{-1}V^{\top}A^{-1}}_{\operatorname{rank} \le k}.$$

Proof.

(a) Consider

$$\begin{bmatrix} A & U \\ -V^{\top} & I_k \end{bmatrix} = \begin{bmatrix} A + UV^{\top} & U \\ 0 & I_k \end{bmatrix} \begin{bmatrix} I_n & 0 \\ -V^{\top} & I_k \end{bmatrix}$$
$$= \begin{bmatrix} I_n & 0 \\ -V^{\top}A^{-1} & I_k \end{bmatrix} \begin{bmatrix} A & U \\ 0 & I_k + V^{\top}A^{-1}U \end{bmatrix}.$$

By taking determinants of the two RHS, we conclude that $\det(A + UV^{\top}) = \det(A) \det(I_k + V^{\top}A^{-1}U)$.

- (b) Follows trivially from (a).
- (c) Define $B := I_k + V^{\top} A^{-1} U$. Then from the equations above,

$$\begin{bmatrix} A + UV^{\top} & U \\ 0 & I_k \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ -V^{\top}A^{-1} & I_k \end{bmatrix} \begin{bmatrix} A & U \\ 0 & B \end{bmatrix} \begin{bmatrix} I_n & 0 \\ -V^{\top} & I_k \end{bmatrix}^{-1}$$

By inverting both sides of the equation, we have,

$$\begin{bmatrix} (A+UV^{\top})^{-1} & -(A+UV^{\top})^{-1}U\\ 0 & I_k \end{bmatrix} = \begin{bmatrix} I_n & 0\\ -V^{\top} & I_k \end{bmatrix} \begin{bmatrix} A^{-1} & -A^{-1}UB^{-1}\\ 0 & B^{-1} \end{bmatrix} \begin{bmatrix} I_n & 0\\ V^{\top}A^{-1} & I_k \end{bmatrix}.$$

The top left hand block gives the desired result.

Next time, we will prove Proposition 3. We will first show that E_+ contains E_{α} and then sketch the proof of its minimality. Define $\overline{a} := \frac{a}{\sqrt{a^{\top}Ba}}$ and note that $\overline{a}^{\top}B\overline{a} = 1$. Therefore, by Lemma $1, -1 \leq \overline{a}^{\top}(x-y) \leq 1$, for all $x \in E$. Then,

$$a^{\top}x \leq a^{\top}y - \alpha\sqrt{a^{\top}Ba}$$
 is equivalent to
 $\overline{a}^{\top}x \leq \overline{a}^{\top}y - \alpha.$

Therefore, $x \in E_{\alpha}$ if and only if $(x - y)^{\top}B^{-1}(x - y) \leq 1$ and $-1 \leq \overline{a}^{\top}(x - y) \leq -\alpha$ or equivalently, $(\overline{a}^{\top}(x - y) + \alpha)(\overline{a}^{\top}(x - y) + 1) \leq 0$. Thus we have two quadratics.