Last time, we introduced the Method of Centers of Gravity (MCG) and the Ellipsoid Method of Yudin and Nemirovski (1976) and Shor (1977), which is a simple modification of MCG.

We represent an ellipsoid by

$$
E(B, y):=\left\{x \in \mathbb{R}^{n}:(x-y)^{\top} B^{-1}(x-y) \leq 1\right\}
$$

where $y \in \mathbb{R}^{n}$, and $B=B^{\top} \in \mathbb{R}^{n \times n}$ is symmetric positive definite.
Observe that $C=[-1,1]^{n} \subseteq E(n I, 0)=\left\{x \in \mathbf{R}^{n}: x^{\top} \frac{1}{n} I x \leq 1\right\}=\left\{x \in \mathbf{R}^{n}:\|x\|_{2} \leq \sqrt{n}\right\}$ (Figure 1). Hence, if $E_{0}=E(n I, 0)$, then $\left(E_{0}, *\right)$ is a localizer and $\operatorname{vol}\left(E_{0}\right) \leq(2 \sqrt{n})^{n}$.

Figure 1: $E(n I, 0)=\left\{x \in \mathbb{R}^{n}: x^{\top} \frac{1}{n} I x \leq 1\right\}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \leq \sqrt{n}\right\}$.

The Ellipsoid Method Algorithm:

- Initialize with $E_{0}=E(n I, 0), z=*$.
- At iteration k, we are given a localizer $\left(E_{k}, z_{k}\right)$, where $E_{k}=E\left(B_{k}, x_{k}\right)$ and x_{k} is the center of gravity of E_{k}. Call the oracle at x_{k}.
- If $x_{k} \notin G \cap \operatorname{int}(C)$, the oracle returns a separating hyperplane $G \subseteq\left\{x: v_{k}^{\top} x \leq v_{k}^{\top} x_{k}\right\}$.

Set $z_{k+1}:=z_{k}, a_{k}:=v_{k}$.

- If $x_{k} \in G \cap \operatorname{int}(C)$, the oracle returns $f\left(x_{k}\right), g\left(x_{k}\right) \in \partial f\left(x_{k}\right)$.

Set $z_{k+1}:=\operatorname{argmin}\left\{f\left(x_{k}\right), f\left(z_{k}\right)\right\}$, and $a_{k}:=g\left(x_{k}\right)$.

- Set E_{k+1} to be the minimum volume ellipsoid containing $E_{k}^{1 / 2}:=\left\{x \in E_{k}: a_{k}^{\top} x \leq a_{k}^{\top} x_{k}\right\}$ (Figure 2).
- Stop if $\operatorname{vol}\left(E_{k+1}\right)<\delta^{n}$ and $z_{k+1}=*($ then $G=\emptyset)$ or if $z_{k+1} \in G$ and $\operatorname{vol}\left(E_{k+1}\right)<(\varepsilon \delta)^{n}$ (then $\epsilon\left(z_{k+1}, f, G\right)<\epsilon$).

Figure 2: Ellipsoid Method
Proposition 1. For every $k,\left(E_{k}, z_{k}\right)$ is a localizer of (f, G).
Proof. The proof is exactly analogous to the proof of the Method of Centers of Gravity from last lecture (i.e., Proposition 2).

Proposition 2. $E_{k+1}=E\left(B_{k+1}, x_{k+1}\right)$, where

$$
x_{k+1}=x_{k}-\tau \frac{B_{k} a_{k}}{\sqrt{a_{k}^{\top} B_{k} a_{k}}}, \quad B_{k+1}=\delta\left(B_{k}-\sigma \frac{B_{k} a_{k} a_{k}^{\top} B_{k}}{a_{k}^{\top} B_{k} a_{k}}\right),
$$

with $\tau=\frac{1}{n+1}, \delta=\frac{n^{2}}{n^{2}-1}$, and $\sigma=\frac{2}{n+1}$.
Note that we are always assuming that $n>1$. In fact, we will prove a stronger proposition for which Proposition 2 is a special case $(\alpha=0)$.
Proposition 3. Let $E=E(B, y)$ and $-\frac{1}{n} \leq \alpha<1$. Then the minimum volume ellipsoid containing $E_{\alpha}=\left\{x \in E: a^{\top} x \leq a^{\top} y-\alpha \sqrt{a^{\top} B a}\right\}$ is $E_{+}:=E\left(B_{+}, y_{+}\right)$, where

$$
B_{+}=\delta\left(B-\sigma \frac{B a a^{\top} B}{a^{\top} B a}\right) \quad \text { and } \quad y_{+}=y-\tau \frac{B a}{\sqrt{a^{\top} B a}}
$$

Here, $\tau=\frac{1+n \alpha}{n+1}, \delta=\frac{\left(1-\alpha^{2}\right) n^{2}}{n^{2}-1}$, and $\sigma=\frac{2(1+n \alpha)}{(n+1)(1+\alpha)}$. Moreover,

$$
\frac{\operatorname{vol}\left(E_{+}\right)}{\operatorname{vol}(E)}=\frac{n}{n+1}\left(\frac{n^{2}}{n^{2}-1}\right)^{\frac{n-1}{2}}(1-\alpha)\left(1-\alpha^{2}\right)^{\frac{n-1}{2}}
$$

This is at most $\exp \left(-\frac{1}{2(n+1)}\right)$ if $\alpha \geq 0$.

Figure 3: Minimum Volume Ellipsoid. If $\alpha \leq-\frac{1}{n}, E_{+}=E$.
We'll prove Proposition 3 next time using the following Lemmata.
Lemma 1. Let $B=B^{\top} \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Then:
(a) B has a unique symmetric positive definite square root, denoted by $B^{1 / 2}$, satisfying $B^{1 / 2} B^{1 / 2}=B$.
(b) $E(B, y)=\left\{y+B^{1 / 2} w:\|w\|_{2} \leq 1\right\}$.
(c) $\operatorname{vol}(E(B, y))=\sqrt{\operatorname{det}(B)} \operatorname{vol}($ unit ball).
(d) For any $0 \neq a \in \mathbf{R}^{n}, a^{\top} x$ is maximized/minimized over $E(B, y)$ at $y \pm \frac{B a}{\sqrt{a^{\top} B a}}$ with optimal values $a^{\top} y \pm \sqrt{a^{\top} B a}$.

Proof.

(a) Write $B=Q D Q^{\top}$, with Q orthogonal (the columns of Q are the eigenvectors of B) and D diagonal (the diagonal entries are the eigenvalues of B). Then, set $D^{1 / 2}$ to be the diagonal matrix containing the positive square roots of the eigenvalues and set $B^{1 / 2}=Q D^{1 / 2} Q^{\top}$. Check that $B=B^{1 / 2} B^{1 / 2}$. We will not prove uniqueness here.
(b) Write $B^{-1 / 2}=\left(B^{1 / 2}\right)^{-1}=\left(B^{-1}\right)^{1 / 2}$. If $x=y+B^{1 / 2} w,\|w\| \leq 1$, then

$$
(x-y)^{\top} B^{-1}(x-y)=w^{\top} B^{1 / 2}\left(B^{1 / 2} B^{1 / 2}\right)^{-1} B^{1 / 2} w=w^{\top} w \leq 1
$$

Conversely, if $(x-y)^{\top} B^{-1}(x-y)=(x-y)^{\top} B^{-1 / 2} B^{-1 / 2}(x-y) \leq 1$. Define $w:=$ $B^{-1 / 2}(x-y)$ and note that

$$
\|w\|=\left\|B^{-1 / 2}(x-y)\right\| \leq 1
$$

(c) $\operatorname{vol}(E(B, y))=\operatorname{vol}\left(\left\{y+B^{1 / 2} w:\|w\| \leq 1\right\}=\operatorname{det} B^{1 / 2} \operatorname{vol}(\right.$ unit ball $)=\sqrt{\operatorname{det}(B)} \operatorname{vol}($ unit ball).
(d) Note that

$$
\begin{aligned}
\max \left\{a^{\top} x: x \in E(B, y)\right\} & =\max \left\{a^{\top}\left(y+B^{1 / 2} w\right):\|w\| \leq 1\right\} \\
& =a^{\top} y+\max \left\{a^{\top} B^{1 / 2} w:\|w\| \leq 1\right\} \\
& \stackrel{(i)}{=} a^{\top} y+\left\|B^{1 / 2} a\right\|
\end{aligned}
$$

where (i) follows by setting $w=\frac{B^{1 / 2} a}{\left\|B^{1 / 2} a\right\|}=\frac{B^{1 / 2} a}{\sqrt{a^{\top} B a}}$, whence the result for maximizing. Similarly for minimizing. This gives both the optimal value and the optimizing point.

Lemma 2. (Sherman - Morrison - Woodbury) Let $A \in \mathbf{R}^{n \times n}$ be invertible and $U, V \in \mathbf{R}^{n \times k}$, where $k<n$. Then
(a) $\operatorname{det}\left(A+U V^{\top}\right)=\operatorname{det}(A) \operatorname{det}\left(I_{k}+V^{\top} A^{-1} U\right)$.
(b) $A+U V^{\top}$ is invertible if and only if $I_{k}+V^{\top} A^{-1} U$ is invertible.
(c) If this holds,

$$
\left(A+U V^{\top}\right)^{-1}=A^{-1}+\underbrace{A^{-1} U\left(I_{k}+V^{\top} A^{-1} U\right)^{-1} V^{\top} A^{-1}}_{\mathrm{rank} \leq k} .
$$

Proof.

(a) Consider

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & U \\
-V^{\top} & I_{k}
\end{array}\right] } & =\left[\begin{array}{cc}
A+U V^{\top} & U \\
0 & I_{k}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} & I_{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} A^{-1} & I_{k}
\end{array}\right]\left[\begin{array}{cc}
A & U \\
0 & I_{k}+V^{\top} A^{-1} U
\end{array}\right]
\end{aligned}
$$

By taking determinants of the two RHS, we conclude that $\operatorname{det}\left(A+U V^{\top}\right)=\operatorname{det}(A) \operatorname{det}\left(I_{k}+\right.$ $\left.V^{\top} A^{-1} U\right)$.
(b) Follows trivially from (a).
(c) Define $B:=I_{k}+V^{\top} A^{-1} U$. Then from the equations above,

$$
\left[\begin{array}{cc}
A+U V^{\top} & U \\
0 & I_{k}
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} A^{-1} & I_{k}
\end{array}\right]\left[\begin{array}{cc}
A & U \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} & I_{k}
\end{array}\right]^{-1} .
$$

By inverting both sides of the equation, we have,

$$
\left[\begin{array}{cc}
\left(A+U V^{\top}\right)^{-1} & -\left(A+U V^{\top}\right)^{-1} U \\
0 & I_{k}
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0 \\
-V^{\top} & I_{k}
\end{array}\right]\left[\begin{array}{cc}
A^{-1} & -A^{-1} U B^{-1} \\
0 & B^{-1}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
V^{\top} A^{-1} & I_{k}
\end{array}\right] .
$$

The top left hand block gives the desired result.

Next time, we will prove Proposition 3. We will first show that E_{+}contains E_{α} and then sketch the proof of its minimality. Define $\bar{a}:=\frac{a}{\sqrt{a^{\top} B a}}$ and note that $\bar{a}^{\top} B \bar{a}=1$. Therefore, by Lemma $1,-1 \leq \bar{a}^{\top}(x-y) \leq 1$, for all $x \in E$. Then,

$$
\begin{aligned}
& a^{\top} x \leq a^{\top} y-\alpha \sqrt{a^{\top} B a} \text { is equivalent to } \\
& \bar{a}^{\top} x \leq \bar{a}^{\top} y-\alpha .
\end{aligned}
$$

Therefore, $x \in E_{\alpha}$ if and only if $(x-y)^{\top} B^{-1}(x-y) \leq 1$ and $-1 \leq \bar{a}^{\top}(x-y) \leq-\alpha$ or equivalently, $\left(\bar{a}^{\top}(x-y)+\alpha\right)\left(\bar{a}^{\top}(x-y)+1\right) \leq 0$. Thus we have two quadratics.

OR 631: Mathematical Programming II. Spring 2014.
Homework Set 3. Due: Tuesday April 15.

1. This question and the next are concerned with central cuts. Suppose we have an ellipsoid $E:=E(B, y)$, and we add two cuts symmetrically placed with respect to the center y. Consider

$$
\bar{E}_{\alpha}:=\left\{x \in E: a^{T} y-\alpha \sqrt{a^{T} B a} \leq a^{T} x \leq a^{T} y+\alpha \sqrt{a^{T} B a}\right\}
$$

for some nonzero $a \in \mathbf{R}^{n}$ and some $0 \leq \alpha \leq 1$.
a) Write the condition for x to lie in \bar{E}_{α} as two quadratics.
b) By combining these two quadratics suitably, find an ellipsoid $E\left(B_{+}, y_{+}\right)$that contains \bar{E}_{α}, depending on a scalar parameter σ.
c) Find the value of σ that minimizes the volume of the resulting ellipsoid as a function of α. Show that for $\alpha=n^{-1 / 2}$ this ellipsoid is just E, while for α smaller than this it gives an ellipsoid of smaller volume than E. (In fact, this is the minimum-volume ellipsoid among all those containing \bar{E}_{α}, not just those obtained this way.)
2. Consider a centrally symmetric polytope, a bounded polyhedron of the form $P:=\{x \in$ $\left.\mathbf{R}^{n}:-b \leq A x \leq b\right\}$ for some A, b.
a) Show that there is a minimum-volume ellipsoid $E=E(B, y)$ containing P.
b) Show that any such must have $y=0$, i.e., it must be centrally symmetric also.
c) Show that, if $E(B, 0)$ is a (the) minimum-volume ellipsoid containing P, then $\left\{n^{-1 / 2} x\right.$: $x \in E(B, 0)\}$ is contained in P.
(Hence such polytopes can be rounded to a factor \sqrt{n}, not n as in the general case. In fact, this holds for any centrally symmetric convex body.)
3. Suppose that $P:=\left\{x \in \mathbf{R}^{n}: A^{T} x \leq e\right\}$ is bounded (where e is the vector of ones as usual). Assume that the function $B \rightarrow-\ln \operatorname{det} B$ is convex as a function of the entries of the symmetric matrix B.
a) Show how the problem of finding the maximum volume ellipsoid with center y contained in P can be written as an optimization problem with a finite number of constraints. (Argue that the positive semidefiniteness constraint can be eliminated.)
b) Exhibit a feasible solution to this problem.
c) Show that if the center y is restricted to be 0 , your optimization problem can be converted to one with linear constraints on B.
d) Now return to the general case, where y is a variable. Try to rewrite the optimization problem with convex constraints (you may want to consider the symmetric square root).

